版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市庐阳区45中学2023年中考考前适应性测试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正六边形2.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A. B. C. D.3.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.4.的值是()A.1 B.﹣1 C.3 D.﹣35.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3的倍数的概率为()A. B. C. D.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°7.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.8.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20° B.35° C.45° D.70°9.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.610.不等式组的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4二、填空题(本大题共6个小题,每小题3分,共18分)11.若式子有意义,则x的取值范围是_____.12.计算:2(a-b)+3b=___________.13.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是14.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.15.已知正方形ABCD,AB=1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_____.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.18.(8分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?20.(8分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?21.(8分)某商城销售A,B两种自行车型自行车售价为2
100元辆,B型自行车售价为1
750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80
000元购进A型自行车的数量与用64
000元购进B型自行车的数量相等.求每辆A,B两种自行车的进价分别是多少?现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13
000元,求获利最大的方案以及最大利润.22.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.23.(12分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.2、D【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故选D.点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3、B【解析】
由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.4、B【解析】
直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,5、C【解析】
根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是3的倍数的有6和9,∴是3的倍数的概率,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.6、A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.考点:平行线的性质.7、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.8、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.9、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.10、D【解析】试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案为且.12、2a+b.【解析】
先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.13、4【解析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.14、【解析】
首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到△AEF的面积.【详解】解:∵在等边△ABC中,∠B=60º,AB=4,D是BC的中点,∴AD⊥BC,∠BAD=∠CAD=30º,∴AD=ABcos30º=4×=2,根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE,∴∠DAE=∠EAC+∠CAD=60º,∴△ADE的等边三角形,∴DE=AD=2,∠AEF=60º,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60º=×=3,∴S△AEF=EF×AF=××3=.故答案为:.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE是等边三角形是解题的关键.15、﹣1<r<.【解析】
首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0<R<1,则-1<-R<0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围.【详解】∵正方形ABCD中,AB=1,
∴AC=,
设圆A的半径为R,
∵点B在圆A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C为圆心的两圆外切,
∴两圆的半径的和为,
∴R+r=,r=-R,
∴-1<r<.
故答案为:-1<r<.【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质.掌握位置关系与数量之间的关系是解题的关键.16、1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.三、解答题(共8题,共72分)17、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.18、7.6m.【解析】
利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗杆AB的高度约为7.6m.【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.19、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.【解析】分析:(Ⅰ)根据题意解答即可;(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.详解:(Ⅰ)设从甲库运往A库粮食x吨;①从甲库运往B库粮食(100﹣x)吨;②从乙库运往A库粮食(1﹣x)吨;③从乙库运往B库粮食(20+x)吨;故答案为(100﹣x);(1﹣x);(20+x).(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.则,解得:0≤x≤1.从甲库运往A库粮食x吨时,总运费为:y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]=﹣30x+39000;∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.20、(Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:则y与x的函数关系式为.(Ⅱ),解得.∴至少要购进20件甲商品.,∵,∴y随着x的增大而减小∴当时,有最大值,.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.21、(1)每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【解析】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;
(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【详解】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1600+10=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤1,∵m为正整数,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点睛】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.22、(1)答案见解析(2)155°(3)答案见解析【解析】
(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度产学研合作项目研发成果转化与知识产权保护协议4篇
- 2024版软件源码授权保密协议范本
- 二手房私人交易协议模板2024版B版
- 2025年度新能源电池研发与采购安装合同范本3篇
- 2025年度厂房修建与绿色建筑节能检测服务合同4篇
- 2025年度智慧城市建设规划与实施合同4篇
- 2025年度地理信息数据库建设测绘合同4篇
- 2025年度企业培训中心场地租赁及课程开发服务合同3篇
- 二零二五年度传统烟酒品牌传承保护协议
- 二零二五年度研学旅行安全保障及责任划分合同
- 银行2025年纪检工作计划
- 2024-2024年上海市高考英语试题及答案
- 注射泵管理规范及工作原理
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- 大唐电厂采购合同范例
- 国潮风中国风2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- IEC 62368-1标准解读-中文
- 15J403-1-楼梯栏杆栏板(一)
- 2024年中考语文名句名篇默写分类汇编(解析版全国)
- 新煤矿防治水细则解读
评论
0/150
提交评论