锐角三角函数- 完整版课件_第1页
锐角三角函数- 完整版课件_第2页
锐角三角函数- 完整版课件_第3页
锐角三角函数- 完整版课件_第4页
锐角三角函数- 完整版课件_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、本章知识结构梳理锐角三角函数1、锐角三角函数的定义⑴、正弦;⑵、余弦;⑶、正切。2、30°、45°、60°特殊角的三角函数值。3、各锐角三角函数间的函数关系式⑴、互余关系;⑵、平方关系;⑶、相除关系。4、解直角三角形⑴、定义;⑵、五元素的关系①、三边间关系;②、锐角间关系;③、边角间关系。⑶、解直角三角形在实际问题中的应用。正弦余弦正切的取值范围二、本章专题讲解专题一:锐角三角函数的定义专题概述:锐角三角函数的定义在解某些问题时可用作一种基本的方法。2,在锐角三角形ABC中,若|cosA-½|+|tanB-1|=0则∠C的度数是()二、本章专题讲解专题二:解直角三角形专题概述:解直角三角形的知识在解决实际问题中有广泛的应用。因此要掌握直角三角形的一般解法,即已知一边一角和已知两边的两种情况,有时要与方程、不等式、相似三角形及圆等知识结合在一起,要注意各种方法的灵活运用.同时要注意常用辅助线的画法:构造直角三角形。二、本章专题讲解专题二:解直角三角形二、本章专题讲解专题三:解直角三角形的实际应用专题概述:解直角三角形的知识在生活和生产中有广泛的应用,如在测量高度、距离、角度,确定方案时都常用到解直角三角形。解这类题关键是把实际问题转化为数学问题,常通过作辅助线构造直角三角形来解决问题。

1,(2011湖南衡阳,9,3分)如图所示,河堤横断面迎水坡AB的坡比是1:√3,堤高BC=5m,则坡面AB的长度是()

2,一艘船由A港沿北偏东600方向航行10km至B港,然后再沿北偏西300方向10km方向至C港,求:(1)A,C两港之间的距离(结果保留根号);(2)确定C港在A港什么方向.二、本章专题讲解专题三:解直角三角形的实际应用二、本章专题讲解专题三:解直角三角形的实际应用3.(2011湖南常德,24,8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图7所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果精确到个位)ABCD300600二、本章专题讲解专题三:解直角三角形的实际应用4,如图点A是一个半径为300m的圆形森林的中心,在森林公园附近有B、C两个村庄,现要在两个村庄之间修一条长为1000m的笔直公路将两村连通,测得,∠ABC=450,∠ACB=300,问此公路是否会穿过森林公园?请通过计算进行说明。ABC二、本章专题讲解

专题四:解直角三角形的转化思想

专题概述:数学思想方法是数学的生命和灵魂。在本章的内容中,转化思想体现得特别突出。如求三角函数的值,三角函数关系中正弦和余弦的转化等,通常把问题转化到直角三角形中解决,在解直角三角形应用题时,把问题转化为解直角三角形的过程中体现了转化思想的数学价值。二、本章专题讲解

专题四:解直角三角形的转化思想

(2011山东聊城,21,8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑,铁塔由塔身和塔座两部分组成(如图①).为了测得铁塔的高度,小莹利用自制的测角仪,在C点测得塔顶E的仰角为45°,在D点测得塔顶E的仰角为60°,已知测角仪AC的高为1.6米,CD的长为6米,CD所在的水平线CG⊥EF于点G(如图②),求铁塔EF的高(结果精确到0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论