模拟退火及紫外光谱法用于多组分维生素B含量分析_第1页
模拟退火及紫外光谱法用于多组分维生素B含量分析_第2页
模拟退火及紫外光谱法用于多组分维生素B含量分析_第3页
模拟退火及紫外光谱法用于多组分维生素B含量分析_第4页
模拟退火及紫外光谱法用于多组分维生素B含量分析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模拟退火及紫外光谱法用于多组分维生素B含量分析【摘要】目的:研究能跨越局部最优而达全局最优的模拟退火算法,结合紫外可见及红外光谱法进行重叠峰分辨,用于多组分分析.方法:将模拟退火算法结合紫外光谱法用于复方药物Vit.B四组分含量测定.结果:,B2,B6和烟酰胺(NA)的回收率分别为%,%,%和%.结论:模拟退火算法结合紫外光谱法用于多组分复方药物的含量测定,操作简便,结果良好.

【关键词】模拟退火算法;多元分析;光谱分析;复方药物;硫胺素;核黄素;维生素B6;烟酰胺

0引言

模拟退火系寻找全局最优并能跨越局部最优的随机优化算法,它源于对高温物质的退火过程模拟即在给定温度下对微观粒子平衡的统计力学模拟.Bohachevsky等针对一般连续函数提出了通用模拟退火法;Kalivas等[1]研究了GSA并进行多元校正及波长与样本选择等.我们将SA及GSA用于多组分分析或重叠谱分辨,获良好结果.迄今已提出了许多化学计量学优化方法包括单纯形法,共轭梯度法,最速梯度法等,均难于保证获全局最优解.我们对此类问题也作了一些探讨即如何获得非线性全局最优解.

1原理和算法1退火过程及MonteCarla模拟固体物质处于熔融状态,所组成的微观粒子处于完全随机排列组合,以足够低的降温速率退火,维持体系在各温度下微粒达平衡则体系服从Boltzmann分布:fi=aiexp(-Ei/Ti)=(1/hi)exp(-Ei/bTi)(1)此处Ti为温度,Ei为能量,i指微粒排列状态,ai为常数,hi为分函数,b为Boltzmann常数,fi为状态i出现的概率.随着温度Ti降低,高能微粒的排列状态出现的概率越来越小,最终趋于零.微粒状态按Boltzmann分布趋于能量最低的状态称为基态.MonteCarlo方法模拟给定温度下微粒达热平衡的过程.对微粒的当前状态随机地进行微扰.令Ea和Eb分别为当前和微扰新状态的能量,能差为△E=Eb-Ea.若EaEb,则接受新状态并无条件代替当前状态;若Ea≤Eb,则以概率为fi=exp(-[Eb--Ea]/Ti)接受这一不利状态作为当前状态.继续徐徐降温并重复Metropolis抽样,直到获得最低能量状态.2模拟算法将微粒状态对应于待优化组合参数x;则能量E相当于目标函数J,退火温度T及Boatsman常数b对应于随机搜索程度控制参数B,具体步骤①设定初始优化状态xa并计算其目标函Ja=J(xa);②对x施加一随机微扰的新状态xb,计算Jb=J(xb)及能差ΔJ=Jb-Ja;③比较Ja与Jb,若JaJb,则无条件接受新状态xb为当前状态,若Ja3通用算法将J=J(x)定义为多维连续函数,并寻优得某状态x0使J(x0)达最优.设当前状态为xa,产生随机状态xbxb=xa+υ・S(2)此处υ为方向矢量,S为变化步长,任意产生n个N(0,1)随机数Wi(i=1,2,…n),计算其余弦方向υi=wi/Σwi2(3)则微扰新状态为xb=xa+S・υxbi=xai+S・υi(4)GSA取消了SA中改变B的控温循环,并修正接受概率为f=exp[-B・ΔJ・(DJ)a]=exp[-B・ΔJ/DJ](5)式中B仍为控制因子,ΔJ=Eb-Ea为微扰能差,DJ=Ea-E0为相对能差,a0为任意负数.当a=0时GSA还原为SA.常取a=-1,接受概率降低,有利收敛.当随机搜索接近全局最优时,应不再接受不利状态即接受概率几近零.步长S在GSA中通常不变,其优化精度往往不高;文献[2]论述了GSA的步长可变性.我们逐步降低步长S,以提高优化精度.J0=J(E0)为全局最优点(localoptimum)对极大化问题J0=Jmax;对极小化问题J0=Jmin.当J0已知时可直接选取;当J0未知或难预先确定,则可先尝试某值,再据运算予以调整.因此GSA提高了优化精度和收敛速度.4控制参数B前已述及,B的选择是SA及GSA的关键.Bohachevsky等建议选择适当的B使接受概率f∈[,],常使f=即接受概率为80%,拒绝概率为20%.B选择不当,则使f过低而陷入局部最优;或使f过高而完全随机游走难于收敛.5多元校正多元校正的定量模型以最常见的多组分光谱分析为例[2,3]表示

标量:Aij=Σk=nk=1Hikxkj+Eij(i=1~l,j=1~m,k=1~n)(6)

矩阵:Al×m=Hl×nxn×m+El×m(7)式中Aij为波长j(j=1~m)处样本i(i=1,2,…l)的吸光度,Eij为相应量测噪音,Hik为组分k(k=1,2,…n)在波长j处的吸光系数,xkj为组分k在样本j中的浓度.它们分别构成相应矩阵,在进行校正时,Hik或Hl×n可由纯组分直接测定获得也可由系列标样数据处理间接确定.

多元预测由未知试样的吸收光谱量测数据A*ij‘,并依据已获得的量测系数,可预测未知浓度即实现多组分同时定性定量.

2实验部分

仪器和试剂UV2501型紫外可见分光光度计(日本岛津)及1cm石英液池用于光谱测定;计算机工作站用于编制适用SA和GSA及扫描算法程序.,B2,B6,烟酰胺(nicotinamide,NA)及泛酸钙等均为分析纯试剂或符合药典要求的原料,中国药典方法及超声促溶配成储备液蔽光保存;以冰乙酸和NaAc配成的缓冲液;其他试剂均为AR级以上.

方法

由适量储备液配制成纯组分标液和多分混合液,在紫外可见分光光度计上测量紫外光谱(Fig1),在扫描波长190~390nm,狭缝宽度nm,220~320nm,nm间隔读取光谱数据,输入计算机处理,以纯组分标样计算吸光系数后取均值.对部分混合样进行同时定量分析.

3结果和讨论

紫外光谱四组分Vit.B(,B2,B6和NA)光谱(Fig1)相互重叠严重,需分离定量或作多元分析.

测试条件优化经实验考察溶液酸度影响,发现pH±范围内吸光度基本恒定,pH升高则吸光度降低,可能是物种稳定性下降所致.故采用适宜酸度pH为测试介质.考察测量波长影响,发现近紫外在220~320nm数据稳定性好(t≥2h),且具有良好的线性加和性.

算法参数选择影响以对称函数f=f(x1,x2)=x21+nsin2π|x1|+2x22+2sin2π|x2|作为目标函数(最小化)为例,考察GSA中循环步长S及控制参数B等对优化求解精度的影响.该最小化目标函数有值为零的全局最优点(x1=0,x2=0)和若干局部极优点.假定优化变量的约束区域为-1≤x1,x2≤1,就此对称函数任取一点(x1=1,x2=1),实际为离全局最优点最远的四点之一,为初始点进行优化搜索.取B=,步长固定为

S=,经3次寻优得目标函数即搜索误差分别为,,;改变搜索步长S,仍取B=,步长初值为S0=,但引入收缩步长循环,若运算中连续百次不接受不利状态则认为抽样稳点,进而以半幅收缩步长S=S/2,重新搜索,经3次寻优搜索后得目标函数为×10-5,×10-5,×10-5,表明引入收缩步长作循环寻优后,其优化解精度显着改善.控制参数B对寻优搜索求解结果亦有较大影响,若B过小(如取B=),则接受不利状态的概率f将过大,使抽样结果不能收敛;若B太大(如取B=100),则接受不利状态的概率f将太小,算法极易陷入局部极优而常常得不到全局最优.计算发现此实例中初始步长对优化结果影响不大.有人认为[4],初始步长S选取要使算法在2~3步内或左右跳出局部最优,但实际应用中此做法难于掌握而不易实现.通常算法受到许多因素的影响或制约,比如局部最优点数,不同函数形状,极点变化缓急程度等等.另外欲控制算法只在极值(局优与全优)点附近搜索的情况在实际上也很难实现.为保证能搜索到整个优化区域寻优步长,S宜取稍大,倘为有约束的优化问题,寻优步长以选取约为边界区域的1/10左右为适宜.倘欲改善优化求解精度,则寻优步长S不妨逐渐收缩减小.

4四组分混合样同时测定实际体系如本文的四组分混合体系的光谱数据处理,计算时控制参数B的选择毫无规律可循且其参数取值任意无界;循环步长S选取亦无经验可言.但优化区域是有下限的,即约束条件xi≥0(浓度不为负值).我们依据测试数据即以光谱数据确定各组分浓度的可能上限,然后以此优化区域边界取初始步长S0(约为1/10)进行优化求解.为保证算法的求解效率特性,进行计算时均去除前百次试算初始不接受不利状态的概率P,若P≥或P≤则返回重新设置参数.以最小二乘为优化准则依本算法GSA预测未知混合样中多组分(,B2,B6和NA)浓度.按L9(34)正交设计及任意随机比例配制9+3若12种标准混合试样,以本算法估算未知浓度并计算回收率,发现回收率为%~%,标准偏差SD≤%,相对偏差RD≤%,与神经网络[2]NN和偏最小二乘法[3]PLS相当,略优于卡尔曼滤波KF,但明显优于常规最小二乘法AKC.

模拟试样分析按处方制成模拟复方试剂,含定量,B2,B6和NA及适量辅料,经超声促溶和震荡充分后过滤,弃滤液初始部分,吸取续滤部分,按实验方法测量uv数据,用本法处理,预测结果见Tab1,回收率为98%以上.分析结果良好.表1通用模拟退火法对复方多组分分析结果

初步结论GSA与SA是一种优良的化学计量学新算法,可用于光谱干扰严重的复方体系不经分离同时测定,为复方四组分的同时定量光谱分析提供了一种优良和有效的新方法,GSA也可在其他方面取得广泛应用.

【参考文献】

[1]KalivasJH.Generalizedsimulatedannealingforcalibrationsampleselectionfromanexistingsetandorthogonalizationofundersignedexperiments[J].JChemometr,1991;5(1):37-48.

[2]邱细敏,刘胜姿,陈榕,等.神经网络反传算法改进及其在药物分析中的应用[J].中国现代应用药学,2004;21(3):204-206.

QiuXM,LiuSZ,ChenR,etal.Modifiedneuralnetworkpropagationalgorithmanditsapplicationinmedicalanalysis[J].ChinModApplPharm,2004;21(3):204-206.

[3]邱细敏,石乐明,李志良,等.阻尼最小二乘分光光度法用于多组分分析[J].分析测试学报,1995;14(3):79-82.

QiuXM,ShiLM,LiZL,etal

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论