2023年下期湖南岳阳市城区八年级数学第二学期期末经典模拟试题含解析_第1页
2023年下期湖南岳阳市城区八年级数学第二学期期末经典模拟试题含解析_第2页
2023年下期湖南岳阳市城区八年级数学第二学期期末经典模拟试题含解析_第3页
2023年下期湖南岳阳市城区八年级数学第二学期期末经典模拟试题含解析_第4页
2023年下期湖南岳阳市城区八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列函数中,一次函数是()A.y=x B.y=kx C.y=1x2.如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为()A.2 B.3C.4 D.53.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.4.如图,已知正比例函数y1=ax与一次函数y2=-12A.a>0 B.b<0C.当x<0时,y1>y2 D.5.下列计算正确的是()A. B. C. D.6.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>27.某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,1.小云这学期的体育成绩是()A.86 B.88 C.90 D.928.下列等式成立的是()A. B. C. D.9.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为()A.4cm2 B.6cm2 C.8cm2 D.9cm210.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3,5,6 B.2,3,5 C.5,6,7 D.6,8,10二、填空题(每小题3分,共24分)11.如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.12.命题“全等三角形的面积相等”的逆命题是__________13.若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.14.一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.15.如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.16.如图,在平行四边形中,对角线相交于点,且.已知,则____.17.如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.18.若一个多边形内角和等于1260°,则该多边形边数是______.三、解答题(共66分)19.(10分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.20.(6分)已知与成正比例,且当时,,则当时,求的值.21.(6分)已知一次函数的图象经过点和.(1)求该函数图像与x轴的交点坐标;(2)判断点是否在该函数图像上.22.(8分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)厂家超过标准质量的部分甲﹣300120乙﹣21﹣1011(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?(2)通过计算,你认为哪一家生产皮具的质量比较稳定?23.(8分)解方程:(1)2x2+4x+2=0;(2)x2x4024.(8分)如图,在“飞镖形”中,、、、分别是、、、的中点.(1)求证:四边形是平行四边形;(2)若,那么四边形是什么四边形?25.(10分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)26.(10分)(1)分解因式:(2)解不等式组

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据一次函数的定义即可判断.【详解】解:A、是一次函数;B、x的系数不是非零常数,故不是一次函数;C、x在分母上,故不是一次函数;D、x的指数为2,故不是一次函数.故选A.【点睛】本题考查了一次函数的定义.2、C【解析】

平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.又∵点E是CD边中点,∴AD=2OE,即AD=1.故选:C.【点睛】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.3、C【解析】

结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.4、A【解析】

利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】∵y1∴a>0,故A正确;∵y2=-1∴b>0,故B错误;∵正比例函数y1∴当x<0时,y1<y当x>2时,y1>y故选:A.【点睛】此题考查一次函数和正比例函数的图象与性质,解题关键在于结合函数图象进行判断.5、B【解析】分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.详解:A.,故不正确;B.,故正确;C.,故不正确;D.,故不正确;故选B.点睛:本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.6、A【解析】由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.【考点】本题考查函数自变量的取值范围.7、B【解析】

根据加权平均数的计算公式,列出算式,再进行计算即可.【详解】解:小云这学期的体育成绩是(分),故选:B.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.8、D【解析】

根据二次根式的混合运算法则进行求解即可.【详解】A..与不能合并,故此选项错误;B.,故此选项错误;C.2与不能合并,故此选项错误;D..【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则是解题关键.9、A【解析】试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△CEF=3S△EFH,∴S△CEF=3S△DGF,∴S△DGF=×12=4(cm2).故选A.考点:三角形中位线定理.10、D【解析】

判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【详解】A.32+52=34≠62,故不能组成直角三角形,错误;B.22+32≠52,故不能组成直角三角形,错误;C.52+62≠72,故不能组成直角三角形,错误;D.62+82=100=102,故能组成直角三角形,正确.故选D.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(每小题3分,共24分)11、【解析】

直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.【详解】解:∵菱形ABCD的周长为12,∴AD=3,∠AOD=90°,∵E为AD边中点,∴OE=AD=.故答案为:.【点睛】本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.12、如果两个三角形的面积相等,那么是全等三角形【解析】

首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.故答案为:如果两个三角形的面积相等,那么是全等三角形【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、【解析】

把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.【详解】∵直线y=kx+3的图象经过点(2,0),∴0=2k+3,解得k=-,则不等式kx+3>0为-x+3>0,解得:x<2,故答案为:x<2.【点睛】本题考查了待定系数法,解一元一次不等式,求出k的值是解题的关键.14、x>1【解析】

利用函数图象,写出直线在直线下方所对应的自变量的范围即可.【详解】解:根据图象得,当x>1时,kx+b<x+a.故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.15、1【解析】

由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.【详解】解:由折叠的性质知,AE=AB=CD,CE=BC=AD,

∴△ADC≌△CEA,∠EAC=∠DCA,

∴CF=AF=cm,DF=CD-CF=AB-CF==,

在Rt△ADF中,由勾股定理得,

AD2=AF2-DF2,则AD=1cm.∴BC=AD=1cm.

故答案为:1.【点睛】本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.16、【解析】

直接构造直角三角形,再利用平行四边形的性质结合勾股定理得出AC的长,利用平行四边形的性质求得AO的长即可.【详解】解:延长CB,过点A作AE⊥CB交于点E,∵四边形ABCD是平行四边形,∴AB=DC=5,BC=AD=3,DC∥AB,∵AD⊥CB,AB=5,BC=3,∴BD=4,∵DC∥AB,∠ADB=90°,∴∠DAB=90°,可得:∠ADB=∠DAE=∠ABE=90°,则四边形ADBE是矩形,故DB=EA=4,∴CE=6,∴AC=,∴AO=.故答案为:.【点睛】此题主要考查了勾股定理以及平行四边形的性质,正确作出辅助线是解题关键.17、36【解析】

根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【详解】解:据E、F是CA、CB的中点,即EF是△CAB的中位线,∴EF=AB,∴AB=2EF=2×18=36.故答案为36.【点睛】本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.18、1【解析】试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.试题解析:根据题意,得(n-2)•180=1260,解得n=1.考点:多边形内角与外角.三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3)20cm.【解析】

(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.【详解】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)证明:∵△AOE≌△COF,∴OE=OF,∵OA=OC,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=1.所以菱形AFCE的周长为1×4=20cm.【点睛】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.20、12.【解析】

利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)(2,0);(2)点不在该函数图像上.【解析】

(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,解出x,即可求得交点;(2)将x=-3代入解析式计算y的值,与6比较即可.【详解】解:(1)设一次函数解析式为y=kx+b,把和代入解析式得:,解得:,∴一次函数解析式为,令y=0,则,解得:,∴该函数图像与x轴的交点坐标为(2,0);(2)将x=-3代入解析式得:,∵,∴点不在该函数图像上.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,熟练掌握待定系数法是解本题的关键.22、(1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.【解析】

(1)求出记录的质量总和,再加上标准质量即可;(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.【详解】解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);(2)∵=×(﹣3+0+0+1+2+0)=0,∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,∵=×(﹣2+1﹣1+0+1+1)=0,∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,∵<,∴乙公司生产皮具的质量比较稳定.【点睛】本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.23、(1);(2).【解析】

(1)方程两边同时除以2,得x2+2x+1=0,再按完全平方公式求解;(2)方程两边同时乘以2,得x2-2x-8=0,再用分解因式法或公式法求解.【详解】解:(1)方程两边同时除以2,得x2+2x+1=0,∴.∴x1=x2=-1.(2)方程两边同时乘以2,得x2-2x-8=0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论