2023届贵州省从江县数学八年级第二学期期末联考模拟试题含解析_第1页
2023届贵州省从江县数学八年级第二学期期末联考模拟试题含解析_第2页
2023届贵州省从江县数学八年级第二学期期末联考模拟试题含解析_第3页
2023届贵州省从江县数学八年级第二学期期末联考模拟试题含解析_第4页
2023届贵州省从江县数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班 B.(2)班 C.(3)班 D.(4)班2.一元二次方程配方后可变形为()A. B. C. D.3.如图,正方形的边长为3,将正方形折叠,使点落在边上的点处,点落在点处,折痕为。若,则的长是A.1 B. C. D.24.如图,菱形中,对角线、相交于点,、分别是边、的中点,连接、、,则下列叙述正确的是()A.和都是等边三角形B.四边形和四边形都是菱形C.四边形与四边形是位似图形D.且5.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为()A.92 B.88 C.90 D.956.如图,在四边形中,,要使四边形是平行四边形,下列可添加的条件不正确的是()A. B. C. D.7.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()A.30° B.45° C.60° D.70°8.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元9.如图,在△ABC中,D、E分别是AB、AC的中点,BC=16,F是线段DE上一点,连接AF、CF,DE=4DF,若∠AFC=90°,则AC的长度是()A.6 B.8 C.10 D.1210.▱ABCD中,∠A=50°,两条对角线相交于点O,下列结论正确的是()A.∠ABC=50° B.∠BCD=50° C.AB=BC D.OB=OC二、填空题(每小题3分,共24分)11.一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.12.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)13.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.14.某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.15.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.16.平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,点E在AB上且AE:EB=1:2,点F是BC中点,过D作DP⊥AF于点P,DQ⊥CE于点Q,则DP:DQ=_______.17.如果+=2012,-=1,那么=_________.18.函数y=﹣的自变量x的取值范围是_____.三、解答题(共66分)19.(10分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.(1)求k的值;(2)如果这个方程有两个整数根,求出它的根.20.(6分)如图O为坐标原点,四边形ABCD是菱形,A(4,4),B点在第二象限,AB=5,AB与y轴交于点F,对角线AC交y轴于点E(1)直接写出B、C点的坐标;(2)动点P从C点出发以每秒1个单位的速度沿折线段C﹣D﹣A运动,设运动时间为t秒,请用含t的代数式表示△EDP的面积;(3)在(2)的条件下,是否存在一点P,使△APE沿其一边翻折构成的四边形是菱形?若存在,请直接写出当t为多少秒时存在符合条件的点P;若不存在,请说明理由.21.(6分)甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?22.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.23.(8分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.24.(8分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.(l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5:2:3的比例确定个人成绩,那么谁将被录用?25.(10分)如图1所示,在中,为边上一点,将沿折叠至处,与交于点.若,,则的大小为_______.提出命题:如图2,在四边形中,,,求证:四边形是平行四边形.小明提供了如下解答过程:证明:连接.∵,,,∴.∵,∴,.∴,.∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?如果有错,说明错在何处,并给出正确的证明过程.(2)用语言叙述上述命题:______________________________________________.运用探究:(3)下列条件中,能确定四边形是平行四边形的是()A.B.C.D.26.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)中,,将沿翻折至,连结.结论1:与重叠部分的图形是等腰三角形;结论2:.试证明以上结论.(应用与探究)在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

直接根据方差的意义求解.【详解】∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、A【解析】

把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】x−8x=2,x−8x+16=18,(x−4)=18.故选:A【点睛】此题考查一元二次方程-配方法,掌握运算法则是解题关键3、B【解析】

设DF为x,根据折叠的性质,利用Rt△A’DF中勾股定理即可求解.【详解】∵A’C=2,正方形的边长为3,∴A’D=1,设DF=x,∴AF=3-x,∵折叠,∴A’F=AF=3-x,在Rt△A’DF中,A’F2=DF2+A’D2,即(3-x)2=x2+12,解得x=故选B.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知正方形的性质及勾股定理的应用.4、C【解析】

根据菱形的性质及直角三角形的性质即可判断.【详解】∵、分别是边、的中点,AC⊥BD,∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A错误;∵MN=BD=BO=DO,∴四边形和四边形都是平行四边形,B错误;由AM=AB,AO=AC,AN=AD,∴四边形与四边形是位似图形,正确;∵、O分别是边、AC的中点∴,但是不一定等于CO,故D错误.故选C【点睛】此题主要考查菱形的性质,解题的关键是熟知中位线定理与直角三角形的性质.5、C【解析】分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40%+10%=1.详解:由题意得,85×50%+95×40%+95×10%=90(分).点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.6、D【解析】

平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵,∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵∴∵∴∴∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加不一定是平行四边形,如图:四边形ABCD为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.7、C【解析】

先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.【详解】解:如图所示,∵l1∥l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选C.【点睛】此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.8、A【解析】

众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.9、D【解析】

由三角形中位线定理得DE=BC,再由DE=4DF,得DF=2,于是EF=6,再根据直角三角形斜边上的中线等于斜边一半的性质即得答案.【详解】解:∵D、E分别是AB、AC的中点,∴DE=BC=,∵DE=4DF,∴4DF=8,∴DF=2,∴EF=6,∵∠AFC=90°,E是AC的中点,∴AC=2EF=12.故选D.【点睛】本题考查了三角形的中位线定理和直角三角形斜边上中线的性质,熟练运用三角形的中位线定理和直角三角形斜边上中线的性质是解题的关键.10、B【解析】

根据平行四边形的性质逐项分析即可.【详解】如图:∵四边形ABCD是平行四边形,∴∠A+∠ABC=180°,∠DAB=∠BCD=50°,AB=DC,OB=OD,∴∠ABC=130°,由上可知正确的结论为B,故选:B.【点睛】此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.二、填空题(每小题3分,共24分)11、

【解析】

利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】正方形的边长为1,,,,,,,则,同理可得:,故正方形的边长是:,则正方形的边长为:,故答案为:.【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.12、∠ABC=90°或AC=BD.【解析】试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为∠ABC=90°.点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.13、50【解析】

乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.【详解】乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,甲的速度为750÷120=6.25米/秒,甲到终点时乙行驶时间1000÷6.25+30=190秒,还剩10秒路程,即10×5=50米,故答案为50米.【点睛】考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.14、47002250中位数【解析】分析:根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.详解:(1)这组数据的平均数为:(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11=4700(元);(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,∴这组数据的中位数是:2250;(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,∴用“中位数”更能反映出该公司全体员工的月人均收入水平.综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.15、15°【解析】

根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【详解】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案为:15°.【点睛】本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.16、2:【解析】【分析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ,∴DP:DQ=2:,故答案为:2:.【点睛】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,求出AF×DP=CE×DQ和AF、CE的值是解题的关键.17、1.【解析】

根据平方差公式进行因式分解,然后代入数值计算即可.【详解】解:∵m+n=1,m-n=1,

∴=(m+n)(m-n)=1×1=1.故答案为:1.【点睛】本题考查因式分解的应用,利用平方差公式分解因式,熟记平方差公式的结构特点是解题的关键.18、x<2【解析】

令2-x>0,解这个不等式即可求出自变量x的取值范围.【详解】由题意得,2-x>0,∴x<2.故答案为:x<2.【点睛】本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.三、解答题(共66分)19、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】

(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.20、(1)B(-1,4),C(-4,0);见解析;(3)或7.5.【解析】

(1)过A作AG⊥x轴于G,根据A点坐标可得AF、AG的长,即可求出BF的长,利用勾股定理可求出DG的长,进而可得OD的长,即可求出OC的长,根据B点在第二象限即可得出B、C两点坐标;(2)根据A、C坐标,利用待定系数法可求出直线AC的解析式,即可求出E点坐标,可得OE=OF,根据菱形的性质可得∠FAE=∠DAE,利用AAS可证明△AEF≌△AEH,可得EH=EF,分别讨论点P在CD、DA边时,利用三角形面积公式表示出△EDP的面积即可;(3)分别讨论沿PA、PE、AE翻折时,点P的位置,画出图形即可得答案.【详解】(1)如图,过A作AG⊥x轴于G,∵A(4,4),四边形ABCD是菱形,∴AD=AB=CD=5,AG=OG=4,AG=4,∴BF=AB-AF=1,DG==3,∴OD=OG-DG=1,∴OC=CD-OD=4,∵点B在第二象限,∴B(-1,4),C(-4,0)(2)如图,连接DE,过E作EH⊥AD于H,设AC解析式为y=kx+b,∵A(4,4),C(-4,0),∴,解得:,∴直线AC的解析式为:y=x+2,当x=0时,y=2,∴E(0,2),∴EF=OE=2,∵四边形ABCD是菱形,∴∠FAE=∠DAE,又∵AE=AE,∠AFE=∠AHE=90°,∴△AEF≌△AEH,∴EH=EF=2,∵t=5时,D与P重合,不构成三角形,∴t≠5,∴当点P在CD边运动时,即0≤t<5时,S△EDP=DP1×OE=(5-t)×2=5-t,当点P在DA边运动时,即5<t≤10时,S△EDP=DP2×EH=(t-5)×2=t-5.(3)当沿AP边翻折时,AE=CE,则P点与C点重合,∴APE三点在一条直线上,故不符合题意.如图,当沿PE翻折时,AE=AP,∵AF=4,EF=2,∴AE==,∴AP=,∴t=10-,如图,当沿AE翻折时,设PA=AP′=EP′=x,∵四边形ABCD是菱形,点P在AD上,∴点P的对称点P′在AB边上,∴在Rt△EFP′中,x2=22+(4-x)2,解得:x=2.5,∴t=10-2.5=7.5.综上所述:当t为10-秒或7.5秒时存在符合条件的点P.【点睛】本题考查菱形的性质、翻折的性质、全等三角形的判定与性质及待定系数法求一次函数解析式,熟练掌握菱形的性质并正确运用分类讨论的思想是解题关键.21、(1)y=20x(0≤x≤30);(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.【解析】试题分析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.考点:一次函数的应用.22、证明见解析【解析】

(1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到EO=BA,然后依据菱形的性质可得到AB=CD.【详解】(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD,∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O,∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形,∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.【点睛】本题主要考查的是菱形的性质判定、矩形的性质和判定,熟练掌握相关图形的性质是解题的关键.23、(1)AB=2;(1)证明见解析.【解析】

(1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.【详解】解:(1)设BM=x,则CM=1x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即30=x1+9x1,解得x=1.∴AB=3x=2.(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠1.∵DE=DA,DP⊥AF∴∠3=∠3.∵∠1+∠1+∠3+∠3=90°,∴∠1+∠3=35°.∴∠DFP=90°﹣35°=35°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△FAH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.【点睛】本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.24、(1)候选人乙将被录用;(2)候选人丙将被录用.【解析】

(1)先根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分,再根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;

(2)根据加权成绩分别计算三人的个人成绩,进行比较.【详解】解:(l)甲、乙、丙的民主评议得分分别为:甲:200×25%=50分,乙:200×40%=80分,丙:200×35%=70分.甲的平均成绩为(分),乙的平均成绩为:(分),丙的平均成绩(分).由于1.67>1>2.67,所以候选人乙将被录用.(2)如果将笔试、面试、民主评议三项测试得分按5:2:3的比例确定个人成绩,那么,甲的个人成绩为:(分)乙的个人成绩为:(分).丙的个人成绩为:(分)由于丙的个人成绩最高,所以候选人丙将被录用.【点睛】本题考查加权平均数的概念及求法,要注意各部分的权重与相应的数据的关系,牢记加权平均数的计算公式是解题的关键.25、(1)详见解析;(2)两组对角分别相等的四边形是平行四边形;(3)B【解析】

由折叠的性质得∠DAE=D′AE=20°,∠DEA=∠D′EA,由三角形外角的性质得∠AEC=∠DAE+∠D=72°,进而得到∠DEA=108°,即可求得∠CED′.(1)利用四边形的内角和和已知条件中的对角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论