湖北省武汉市江岸区七一华源中学2022-2023学年八年级数学第二学期期末统考试题含解析_第1页
湖北省武汉市江岸区七一华源中学2022-2023学年八年级数学第二学期期末统考试题含解析_第2页
湖北省武汉市江岸区七一华源中学2022-2023学年八年级数学第二学期期末统考试题含解析_第3页
湖北省武汉市江岸区七一华源中学2022-2023学年八年级数学第二学期期末统考试题含解析_第4页
湖北省武汉市江岸区七一华源中学2022-2023学年八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为(

)A.9环与8环 B.8环与9环 C.8环与8.5环 D.8.5环与9环2.如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是()A.①②③ B.①③④ C.②③④ D.①②3.若分式的值为零,则x的值是()A.2或-2 B.2 C.-2 D.44.不等式x≥2的解集在数轴上表示为()A. B.C. D.5.某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程()A. B.C. D.6.如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为()A. B. C. D.7.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.8.在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )A.①②⑤ B.①②⑥ C.③④⑥ D.①②④9.把一元二次方程x2-4x-1=0配方后,下列变形正确的是(A.(x-2)2=5 B.(x-2)2=310.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.511.若分式方程有增根,则m等于()A.-3 B.-2 C.3 D.212.如果等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或12二、填空题(每题4分,共24分)13.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.14.不等式组的解集是________15.若实数x,y满足+(y+)2=0,则yx的值为________.16.为了了解某校九年级学生的体能情况,随机抽查额其中名学生,测试分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的统计图(注:包括,不包括,其他同),根据统计图计算成绩在次的频率是__________.17.学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.18.如图,在▱ABCD中,M为边CD上一点,将△ADM沿AM折叠至△AD′M处,AD′与CM交于点N.若∠B=55°,∠DAM=24°,则∠NMD′的大小为___度.三、解答题(共78分)19.(8分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)20.(8分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).(1)求a的值;(2)(-2,a)可看成怎样的二元一次方程组的解?21.(8分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.22.(10分)如图,在等腰梯形ABCD中,AB=DC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.(1)求证:四边形MENF是菱形;(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.23.(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由24.(10分)如图,在菱形ABCD中,∠ABC=120°,AB=4,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.(1)如图1,当AE=AF时,求∠AEB的度数;(2)如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.25.(12分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,,解答下列问题:(1)将向上平移1个单位长度,再向右平移5个单位长度后得到的,画出;(2)绕原点逆时针方向旋转得到,画出;(3)如果利用旋转可以得到,请直接写出旋转中心的坐标.26.阅读例题,解答下题.范例:解方程:x2+∣x+1∣﹣1=0解:(1)当x+1≥0,即x≥﹣1时,x2+x+1﹣1=0x2+x=0解得x1=0,x2=﹣1(2)当x+1<0,即x<﹣1时,x2﹣(x+1)﹣1=0x2﹣x﹣2=0解得x1=﹣1,x2=2∵x<﹣1,∴x1=﹣1,x2=2都舍去.综上所述,原方程的解是x1=0,x2=﹣1依照上例解法,解方程:x2﹣2∣x-2∣-4=0

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.故选C.【点睛】本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.2、A【解析】

连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.【详解】连接OO′,如图,

∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,

∴BO′=BO=8,∠OBO′=60°,

∵△ABC为等边三角形,

∴BA=BC,∠ABC=60°,

∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;

∵△BOO′为等边三角形,

∴OO′=OB=8,所以②正确;

∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,

∴AO′=OC=10,

在△AOO′中,∵OA=6,OO′=8,AO′=10,

∴OA2+OO′2=AO′2,

∴△AOO′为直角三角形,∠AOO′=90°,

∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;,故④错误,故选:A.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.3、C【解析】

试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【详解】x2-4=0,x=±2,同时分母不为0,∴x=﹣24、C【解析】

根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为:故答案为:C.【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、C【解析】

设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.【详解】设月平均增长率的百分数为x,

20+20(1+x)+20(1+x)2=1.

故选:C.【点睛】此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.6、B【解析】

依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=,可得G(,3).【详解】解:如图:∵▱AOBC的顶点O(0,0),A(-1,3),∴AH=1,HO=3,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=,∴G(,3),故选:B.【点睛】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.7、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、D【解析】

根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.【详解】,,四边形是平行四边形,如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;,,四边形是平行四边形,如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.故选:.【点睛】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).9、A【解析】

先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.【详解】∵x2∴x2∴x2∴(x-2)2故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.10、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.11、B【解析】

先去掉分母,再将增根x=1代入即可求出m的值.【详解】解,去分母得x-3=m把增根x=1代入得m=1-3=-2故选B.【点睛】此题主要考查分式方程的求解,解题的关键是熟知增根的含义.12、C【解析】试题分析:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C.考点:等腰三角形的性质、三角形的三边关系.二、填空题(每题4分,共24分)13、2【解析】

设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.【详解】解:∵y与x+1成正比例,∴设y=k(x+1),∵x=1时,y=2,∴2=k×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=2.故答案为2.【点睛】本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.14、x1【解析】分析:先求出两个不等式的解集,再求其公共解.详解:,解不等式①得:x>﹣2,解不等式②得:x>1,所以,不等式组的解集是x>1.故答案为:x>1.点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、3【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答【详解】根据题意得:解得:则yx=()=3故答案为:3【点睛】此题考查非负数的性质,掌握运算法则是解题关键16、【解析】

根据频率的求法,频率=,计算可得到答案.【详解】频率=.故答案为:0.7.【点睛】本题考查了随机抽样中的条形图的认识,掌握频率的求法是解题的关键.17、北偏西25°方向距离为300m【解析】

根据题意作出图形,即可得到大刚家相对于小亮家的位置.【详解】如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m由图可知∠CBE=∠BCD,∵AB=AC,∴∠ABC=∠ACB,即∠ABE-∠CBE=∠ACD+∠BCD,∴85°-∠CBE=35°+∠CBE,∴∠CBE=25°,∴∠ABC=∠ACB=60°,∴△ABC为等边三角形,则BC=300m,∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m故填:北偏西25°方向距离为300m.【点睛】此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.18、22.【解析】

由平行四边形的性质得出∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性质求出∠AMN=79°,与三角形内角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,∴∠NMD'=101°-79°=22°;故答案为:22.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AMN和∠AMD'是解决问题的关键.三、解答题(共78分)19、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】

(1)①根据题意补全图形即可;

②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;

(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.

理由:

在正方形ABCD,

∴AD=CD,∠ADC=90°,

∵由DE绕着点D顺时针旋转90°得DG,

∴∠GDE=∠ADC=90°,GD=DE,

∴∠GDA=∠EDC

在△AGD和△CED中,,

∴△AGD≌△CED,

∴AG=CE.

如图2,延长CE分别交AG、AD于点F、H,

∵△AGD≌△CED,

∴∠GAD=∠ECD,

∵∠AHF=∠CHD,

∴∠AFH=∠HDC=90°,

∴AG⊥CE.

(2)①当点G在线段BD的延长线上时,如图3所示.

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADB=∠GDM=45°.

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD+DM=6

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=

②当点G在线段BD上时,如图4所示,

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADG=45°

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD-MD=2

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=.故CE的长为或.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.20、(1)a=-5;(2)可以看作二元一次方程组的解.【解析】

(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;

(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.【详解】.解:(1)设直线的解析式为y=kx+b,将(2,3),(-1,-3)代入,,解得,所以y=2x-1.将x=-2代入,得到a=-5;(2)由(1)知点(-2,-5)是直线与直线交点,则:y=2.5x;因此(-2,a)可以看作二元一次方程组的解.故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.【点睛】本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.21、(1)(1,2)(2)1【解析】分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.详解:(1)∵,∴,∴E(1,2);(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,∴C(2,0),∴AC=2﹣(﹣1)=1,==1.点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.22、见解析【解析】

(1)利用等腰梯形的性质证明,利用全等三角形性质及中点概念,中位线的性质证明四边形的四边相等得结论.(2)连接,利用三线合一证明是等腰梯形的高,再利用正方形与直角三角形的性质可得结论.【详解】(1)四边形为等腰梯形,所以,为中点,.

为、中点,,,所以:,为的中点,为中点,

∴四边形是菱形.

(2)连结MN,∵BM=CM,BN=CN,∴MN⊥BC,∵AD∥BC,∴MN⊥AD,∴MN是梯形ABCD的高,又∵四边形MENF是正方形,∴△BMC为直角三角形,又∵N是BC的中点,,即等腰梯形ABCD的高是底边BC的一半.

【点睛】本题考查的是等腰梯形的性质,等腰直角三角形的性质,三角形的全等的判定,菱形的判定,正方形的性质等,掌握以上知识点是解题关键.23、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】

(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;

(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;

②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为,将A(-4,0)与F(0,2)代入得,解得,∴,联立,解得:,∴D的坐标为(,).综上所述:D点的坐标为(-1,3)或(,)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.24、(1)45°;(2)①四边形BEFG是菱形,8;②y=(0<x<12)【解析】

(1)利用等腰三角形的性质求出∠AEF即可解决问题.(2)①证明四边形BEFG是菱形,根据垂线段最短,求出BE的最小值即可解决问题.②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.证明△ABG≌△DBE(SAS),推出AG=DE=y,在Rt△CEH中,EH=EC=x.CH=x,推出DH=|4﹣x|,在Rt△DEH中,根据DE2=EH2+DH2,构建方程求解即可.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∴BC∥AD,∠BAC=∠DAC,∴∠ABC+∠BAD=180°,∵∠ABC=120°,∴∠BAD=60°,∴∠EAF=30°,∵AE=AF,∴∠AEF=∠AFE=75°,∵∠BEF=120°,∴∠AEB=120°﹣75°=45°.(2)①如图2中,连接DE.∵AB=AD,∠BAE=∠DAE,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE,∠ABE=∠ADE,∵∠BAF+∠BEF=60°+120°=180°,∴∠ABE+∠AFE=180°,∵∠AFE+∠EFD=180°,∴∠EFD=∠ABE,∴∠EFD=∠ADE,∴EF=ED,∴EF=BE,∵BE∥FG,BG∥EF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论