陕西省西安市雁塔区电子科技中学2022-2023学年八年级数学第二学期期末检测模拟试题含解析_第1页
陕西省西安市雁塔区电子科技中学2022-2023学年八年级数学第二学期期末检测模拟试题含解析_第2页
陕西省西安市雁塔区电子科技中学2022-2023学年八年级数学第二学期期末检测模拟试题含解析_第3页
陕西省西安市雁塔区电子科技中学2022-2023学年八年级数学第二学期期末检测模拟试题含解析_第4页
陕西省西安市雁塔区电子科技中学2022-2023学年八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列关系不是函数关系的是()A.汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数B.改变正实数x,它的平方根y随之改变,y是x的函数C.电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数D.垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数2.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量 B.2π是常量,C,R是变量C.C、2是常量,R是变量 D.2是常量,C、R是变量3.如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.8 B.6 C.9 D.104.如图,l1∥l2,▱ABCD的顶点A在l1上,BC交l2于点E.若∠C=100°,则∠1+∠2=()A.100° B.90° C.80° D.70°5.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.6.下列说法中错误的是()A.四边相等的四边形是菱形 B.菱形的对角线长度等于边长C.一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形7.下列命题中,正确的是()A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点B.平行四边形是轴对称图形C.三角形的中位线将三角形分成面积相等的两个部分D.一组对边平行,一组对角相等的四边形是平行四边形8.已知,则的值是()A. B. C. D.9.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A.1个 B.2个 C.3个 D.4个10.正方形的边长为,在其的对角线上取一点,使得,以为边作正方形,如图所示,若以为原点建立平面直角坐标系,点在轴正半轴上,点在轴的正半轴上,则点的坐标为()A. B. C. D.11.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形12.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形;以此进行下去,则正方形的面积为A. B. C. D.二、填空题(每题4分,共24分)13.如图1,平行四边形纸片的面积为120,,.沿两对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是.14.要使二次根式有意义,则的取值范围是________.15.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.16.分解因式:x2y﹣y3=_____.17.若□ABCD中,∠A=50°,则∠C=_______°.18.已知菱形的两条对角线长分别为4和9,则菱形的面积为_____.三、解答题(共78分)19.(8分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.20.(8分)如图,已知是的中线,且求证:若,试求和的长21.(8分)如图所示,将置于平面直角坐标系中,,,.(1)画出向下平移5个单位得到的,并写出点的坐标;(2)画出绕点顺时针旋转得到的,并写出点的坐标;(3)画出以点为对称中心,与成中心对称的,并写出点的坐标.22.(10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.23.(10分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲8690乙9283(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?24.(10分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.(1)若,,求平行四边形的面积;(2)求证:.25.(12分)如图,在正方形中,,分别是,上两个点,.(1)如图1,与的关系是________;(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;(3)如图2,当点是的中点时,求证:.26.先化简,然后从中选出一个合适的整数作为的值代入求值.

参考答案一、选择题(每题4分,共48分)1、B【解析】

利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【详解】解:A、汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数,故此选项不合题意;B、y表示一个正数x的平方根,y与x之间的关系,两个变量之间的关系不能看成函数关系,故此选项符合题意;C、电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数,故本选项不合题意;D、垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数,故本选项不合题意.故选:B.【点睛】此题主要考查了函数的定义,正确把握函数定义是解题关键.对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即一一对应.2、B【解析】

根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.【详解】在圆的周长公式中中,C与r是改变的,π是不变的;所以变量是C,R,常量是2π.故答案选B【点睛】本题考查了变量与常量的知识,属于基础题,正确理解变量与常量的概念是解题的关键.3、A【解析】

由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案【详解】∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选A.【点睛】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE4、C【解析】

由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,

∴∠BAD=∠C=100°,AD∥BC,

∴∠2=∠ADE,

∵l1∥l2,

∴∠ADE+∠BAD+∠1=180°,

∴∠1+∠2=180°-∠BAD=80°;

故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.5、C【解析】

四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【点睛】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.6、B【解析】

由菱形的判定和性质可判断各个选项.【详解】解:∵四边相等的四边形是菱形∴A选项正确∵菱形的对角线长度不一定等于边长,∴B选项错误∵一组邻边相等的平行四边形是菱形∴C选项正确∵对角线互相垂直平分的四边形是菱形∴选项D正确故选:B.【点睛】本题考查了菱形的判定与性质,熟练运用菱形的判定和性质解决问题是本题的关键.7、D【解析】

由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.【详解】解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;B.平行四边形是轴对称图形;不正确;C.三角形的中位线将三角形分成面积相等的两个部分;不正确;D.一组对边平行,一组对角相等的四边形是平行四边形;正确;故选:D.【点睛】本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.8、D【解析】∵,∴设出b=5k,得出a=13k,把a,b的值代入,得,.故选D.9、A【解析】

先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.【详解】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH∴BH平分∠ABE,故④正确;故选:A.【点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.10、D【解析】

作辅助线,根据正方形对角线平分内角的性质可证明△AGH是等腰直角三角形,计算GH和BH的长,可解答.【详解】解:过G作GH⊥x轴于H,

∵四边形ABCD是正方形,

∴∠BAC=45°,

∵四边形AEFG是正方形,AE=AB=2,

∴∠EAG=90°,AG=2,

∴∠HAG=45°,∵∠AHG=90°,

∴AH=GH=,

∴G(,2+),

故选:D.【点睛】本题考查了正方形的性质,等腰直角三角形的性质和判定等知识,掌握等腰直角三角形各边的关系是关键,理解坐标与图形性质.11、A【解析】

试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.12、B【解析】

根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【详解】解:如图,已知小正方形ABCD的面积为1,则把它的各边延长一倍后,的面积,新正方形的面积是,从而正方形的面积为,以此进行下去,则正方形的面积为.故选:B.【点睛】此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.二、填空题(每题4分,共24分)13、26【解析】如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴EF="120/20"=6,又BC=20,∴对角线之和为20+6=26,14、x≥1【解析】

根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.15、1或8【解析】

由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.16、y(x+y)(x﹣y).【解析】试题分析:先提取公因式y,再利用平方差公式进行二次分解.解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y).17、50【解析】因为平行四边形的对角相等,所以∠C=50°,故答案为:50°.18、1【解析】

利用菱形的面积等于对角线乘积的一半求解.【详解】菱形的面积=×4×9=1.故答案为1.【点睛】此题考查菱形的性质,难度不大三、解答题(共78分)19、(1)等腰直角三角形;(1)①补全图形;②的形状是等腰三角形,证明见解析.【解析】

(1)由在正方形ABCD中,可得∠ABC=90°,AB=BC,又由点P与点B重合,点M,N分别为BC,AP的中点,易得BN=BM,即可判定△EPN的形状是:等腰直角三角形;(1)①首先根据题意画出图形;②首先在MC上截取MF,使MF=PM,连接AF,易得MN是△APF的中位线,证得∠1=∠1,易证得△ABF≌△DCP(SAS),则可得∠1=∠3,继而证得∠1=∠1,则可判定△EPM的形状是:等腰三角形.【详解】(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点M,N分别为BC,AP的中点,∴当点P与点B重合时,BN=BM,∴当点P与点B重合时,△EPM的形状是:等腰直角三角形;故答案为:等腰直角三角形;(1)补全图形,如图1所示.的形状是等腰三角形.证明:在MC上截取MF,使MF=PM,连结AF,如图1所示.∵N是AP的中点,PM=MF,∴MN是△APF的中位线.∴MN∥AF.∴.=∵M是BC的中点,PM=MF,∴BM+MF=CM+PM.即BF=PC.∵四边形ABCD是正方形,∴,AB=DC.∴△ABF≌△DCP.∴.∴.∴EP=EM.∴△EPM是等腰三角形.【点睛】此题属于四边形的综合题,考查了正方形的性质、等腰直角三角形的判定、三角形中位线的性质以及全等三角形的判定与性质,注意准确作出辅助线是解此题的关键.20、(1)见解析;(2)【解析】

(1)通过利用等角的补角相等得到,又已知,即可得证(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD【详解】证明:解:是的中线由得【点睛】本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段21、(1)图见解析,(-1,-1);(2)图见解析,(4,1);(3)图见解析,(1,-4);【解析】

(1)根据平移的性质画出点A、B、C平移后的对应点A1、B1、C1即可得到;

(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A2、B2、C2即可得到;(3)根据关于原点对称的点的坐标特征写出A3、B3、C3的坐标,然后描点即可。【详解】(1)如图,为所作,点的坐标为(-1,-1);(2)如图,为所作,点的坐标为(4,1);(3)如图,为所作,点的坐标为(1,-4);【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22、(1)丙,乙,甲;(2)甲被录用.【解析】

(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)先算出甲、乙、丙的总分,根据公司的规定先排除丙,再根据甲的总分最高,即可得出甲被录用.【详解】(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分).∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.【点睛】本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.23、(1)甲将被录取;(2)乙将被录取.【解析】

(1)求得面试和笔试的平均成绩即可得到结论;

(2)根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.【详解】解:(1)==89(分),==87.5(分),因为>,所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;(2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数较高,所以乙将被录取.【点睛】此题考查了加权平均数的计算公式,解题的关键是:计算平均数时按6和4的权进行计算.24、(1);(2)证明见解析.【解析】

(1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;(2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.【详解】解:(1)过点作于点,∵,∴,∴,∵四边形是平行四边形,∴,∴,∴,(2)在上截取点,使,连接.∵∴是等边三角形,∴,,∵,,∴AE=AB,∵四边形是平行四边形,∴,∴是等边三角形,∴,,∵,∴,∴,∴,∴.【点睛】本题考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论