




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
processcapability(CP,CPK,PPK)英文版知识讲座ProcessCapability(Cp/Cpk/Pp/Ppk)
GlobalTrainingMaterialCreator :GlobalMechanicsProcessManagerFunction :MechanicsApprover :GaryBradley/GlobalProcessTeamDocumentID :DMT00018-ENVersion/Status :V.1.0/ApprovedLocation :Notes:\\…\NMP\DOCMANR4\PCP\PCProcessLibraryDocManChangeHistory:Issue Date HandledBy Comments1.0 21stDec’01 JimChristy&SørenLundsfryd ApprovedforGlobalUseNOTE–Allcommentsandimprovementsshouldbeaddressedtothecreatorofthisdocument.ContentsSection Heading/Description Page1 Variation,TolerancesandDimensionalControl 4 2 Population,SleandNormalDistribution 153 CpandCpkConcept 284 UseoftheNMPDataCollectionSpreadsheet 445 ConfidenceofCpk 52 ProcessCapability-EvaluatingManufacturingVariationAcknowledgementsBennyMatthiassen (NMPCMT,Copenhagen,Denmark)FrankAdler (NMPAlliance,Dallas,USA)JoniLaakso (NMPR&D,Salo,Finland)JimChristy (NMPSRC,Southwood,UK)Section1Variation,TolerancesandDimensionalControlTwoTypesofProductCharacteristicsVariable:Acharacteristicmeasuredinphysicalunits,limetres,volts,amps,decibelandseconds.ONOFFAttribute:Acharacteristicthatbycomparisontosomestandardisjudged“good”or“bad”,e.g.freefromscratches(visualquality).InthistrainingwedealwithvariablesonlyTheSourcesofProcess/SystemVariationMethodsOperatorsCustomerSatisfactionMaterialEnvironmentEquipmentProcessTwoTypesofProcessesAllprocesseshave:Natural(random)variability
=>duetocommoncausesStableProcess:
AprocessinwhichvariationinoutcomesarisesonlyfromcommoncausesUnstableProcess:
AprocessinwhichvariationisaresultofbothcommonandspecialcausesUSLLSLnominalvalueDefectUSLLSLnominalvalue
Unnaturalvariability=>duetospecialcausesShewhart(1931)TheTwoCausesofVariationCommonCauses:Causesthatareimplementedintheprocessduetothedesignoftheprocess,andaffectalloutcomesoftheprocessIdentifyingthesetypesofcausesrequiresmethodssuchasDesignofExperiment(DOE),etc.
SpecialCauses:Causesthatarenotpresentintheprocessallthetimeanddonotaffectalloutcomes,butarisebecauseofspecificcircumstancesSpecialcausescanbeidentifiedusingStatisticalProcessControl(SPC)USLLSLNominal
valueDefectUSLLSLnominal
valueTolerancesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9AcceptablepartRejectedPartRejectedProductNominal10,80,1RejectedPartAtoleranceisaallowedmaximumvariationofadimension.MeasurementReportInmostcaseswemeasureonlyonepartpercavityformeasurementreportExleofCapabilityAnalysisDataForsomecriticaldimensionsweneedtomeasuremorethan1partForcapabilitydataweusuallymeasure5pcs2times/hour=100pcs(butslingplanneedstobemadeonthebasisofproductionquantity,rundurationandcycletime)ProcessCapability-Whatisit?ProcessCapabilityisameasureoftheinherentcapabilityofamanufacturingprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecificationsProcessCapabilityisdesignatedbyCpandCpkProcessPerformanceisameasureoftheperformanceofaprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecifications.ProcessPerformanceincludesspecialcausesofvariationnotpresentinProcessCapabilityProcessPerformanceisdesignatedPpandPpkWhyMakeProcessCapabilityStudiesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9Nominal10,80,1Thispartiswithinspec.ThetoolwouldbeapprovedifonlythispartwasmeasuredThesepartsareoutofspecandcouldbeapprovedifonlyonegoodpartwasmeasuredAprocesscapabilitystudywouldrevealthatthetoolshouldnotbeacceptedWhenadimensionneedstobekeptproperlywithinspec,wemuststudytheprocesscapability….butstillthisisnoguaranteefortheactualperformanceoftheprocessasitisonlyaninitialcapabilitystudyE1.5
E1
E2
E3
E4
E5TheNokiaProcessVerificationProcessBlackdiamondstobefixedbyE3(oftenachangeofawhitediamond)ProposalforblackdiamondstobediscussedwithSupplier.Max:105,85OngoingProcessControl(SPC)TolerancesappliedtodrawingType1FunctionalCharacteristics-1part/cavitymeasuredformeasurementreportWhitediamonds(s)tobeagreedWhitediamonds(s)tobediscussedwithsupplier10parts/cavitymeasuredformeasurementreportCapabilitystudy:Requirement:CpandCpk>1.67byE3.Quantitiestobeagreedwithsupplier.Minimum5partspr1/2hourin10hoursmeasuredforeachcavity=100parts.Canvarydependingontoolcapacity,e.g.stampedparts(seeDMY00019-EN)Section2.Population,SleandNormalDistributionTheBellShaped(Normal)DistributionSymmetricalshapewithapeakinthemiddleoftherangeofthedata.Indicatesthattheinputvariables(X's)totheprocessarerandomlyinfluenced.“PopulationParameters”
=Populationmean
=PopulationstandarddeviationPopulationversusSlePopulationAnentiregroupofobjectsthathavebeenmadeorwillbemadecontainingacharacteristicofinterestSleThegroupofobjectsactuallymeasuredinastatisticalstudyAsleisusuallyasubsetofthepopulationofinterestPopulationSample“SampleStatistics” x=Samplemean s=SamplestandarddeviationTheNormalDistributionWhatMeasurementsCanBeUsedtoDescribeaProcessorSystem?Example:1
=52
=73
=44
=25
=6mean(average)ordescribesthelocationofthedistributionµ(mü),ameasureofcentraltendency,isthemeanoraverageofallvaluesinthepopulation.Whenonlyasampleofthepopulationisbeingdescribed,meanismoreproperlydenotedas
(x-bar):Example:1
=52
=73
=44
=25
=6Themostsimplemeasureofvariabilityistherange.Therangeofasleisdefinedbyasthedifferencebetweenthelargestandthesmallestobservationfromslesinasub-group,e.g.5consecutivepartsfromthemanufacturingprocess.WhatMeasurementsCanBeUsedtoDescribeProcessvariation?sST-oftennotatedasorsigma,isanothermeasureofdispersionorvariabilityandstandsfor“short-termstandarddeviation”,whichmeasuresthevariabilityofaprocessorsystemusing“rational”sub-grouping.where
istherangeofsubgroupj,Nthenumberofsubgroups,andd2*dependsonthenumberNofsubgroupsandthesizenofasubgroup(seenextslide)WhatMeasurementsCanBeUsedtoDescribeProcessvariation?d2*valuesforSSTWhere:N=no.ofsub-groups,n=no.ofsamplesineachsub-groupd2*d2Typical:N=20&n=5
x3
x2
x1
x10x_tExample:WhatMeasurementsCanBeUsedtoDescribeProcessvariation?TheDifferenceBetweenSSTandsLT!!meanTimeDimensionShorttermStandardDeviationLongtermStandardDeviationSubgroupsizen=5NumberofsubgroupsN=7TRENDSubgroupNo.1ThedifferencebetweenthestandarddeviationssLTandsSTgivesanindicationofhowmuchbetteronecandowhenusingappropriateproductioncontrol,likeStatisticalProcessControl(SPC).Short-termstandarddeviation:Long-termstandarddeviation
:ThedifferencebetweensSTandsLTThedifferencebetweensSTandsLTThedifferencebetweensLTandsST
isonlyinthewaythatthestandarddeviationiscalculatedsLTisalwaysthesameorlargerthansSTIfsLTequalssST,thentheprocesscontroloverthelonger-termisthesameastheshort-term,andtheprocesswouldnotbenefitfromSPCIfsLTislargerthansST,thentheprocesshaslostcontroloverthelonger-term,andtheprocesswouldbenefitfromSPCThereliabilityofsLTisimprovedifthedataistakenoveralongerperiodoftime.AlternativelysLTcanbecalculatedonseveraloccasionsseparatedbytimeandtheresultscomparedtoseewhethersLTisstableExercise1:SleDistributions1.InExcelfile"Dataexercise1.xls"youfind100measurementsbeingtheresultofacapabilitystudy.Thespecificationforthedimensionis15,16,012.Howwelldoestheslepopulationfitthespecification,e.g.shouldweexpectanypartsoutsidespec?3.Mentionpossibleconsequencesofhavingapartoutsidespec.4.Mentionpossiblecausesofvariationforparts.5. Calculatetheslemeanandslestandarddeviationforthe100measurements.UsetheaverageandstdevfunctionsExcel.Section3.CpandCpkConceptDefiningCpandPpSamplemeanProcessvariation6*sUSL-LSLLSLUSLNominaldimThetoleranceareadividedbythetotalprocessvariation,irrespectiveofprocesscentring.DefiningCpkandPpkSamplemeanProcessvariation3sProcessvariation3sMean-LSLUSL-MeanLSLUSLNominaldimCpkandPpkIndexesaccountalsoforprocesscentring.WhatistheDifferenceBetweenCpandCpk?TheCpindexonlyaccountsforprocessvariabilityTheCpkIndexaccountsforprocessvariabilityandcenteringoftheprocessmeantothedesignnominalTherefore,CpCpkNOTE:SameappliesalsoforPpandPpkCp=Cpk(bothlow)LSLUSLMean=NominalRejectpartsRejectpartsCphigh,Cpklow
Processshouldbeoptimized!NominalLSLMeanUSLRejectpartsWhatDoTheseIndexesTellUs??Simplenumericalvaluestodescribethequalityoftheprocess>>ThehigherthenumberthebetterRequirementforCpandCpkis1.67min.RecommendationforPpandPpkis1.33min.Thisleavesussomespaceforthevariation,i.e.asafetymarginAreweabletoimproveourprocessbyusingSPC?Ifindexislow,followingthingsshouldbegivenathought:IstheproductdesignOK?Aretolerancelimitssetcorrectly?Tootight?Istheprocesscapableofproducinggoodqualityproducts?Processvariation?DOErequired?Isthemeasuringsystemcapable?(SeeGageR&R)Cpk-Witha2-sigmasafetymargin-3sST+3sSTLCLUCLLSLUSLMeanvalue=NominalvalueorTargetRequirementforCpandCpkis1.67min.1.67isaratioof=5/3or10/6.6*standarddeviation10*standarddeviation2*standarddeviation2*standarddeviationCpk<1.67theprocessNOTCAPABLEAcceptabilityofCpkIndex
Cpk>=1.67theprocessisCAPABLECpk>=2.0theprocesshasreachedSixSigmalevelWhatDoTheseIndexesTellUs??IfCp=Cpk,IfPp=Ppk,IfCpk<Cp,IfPpk<Pp,IfCp=Pp,IfCpk=Ppk,IfPp<Cp,IfPpk<Cpk,…thenprocessisaffectedbyspecialcauses.InvestigateX-bar/R-chartforout-of-controlconditions.SPCmaybeeffective…thenprocessisnotaffectedbyspecialcausesduringthestudyrun.SPCwouldnotbeeffectiveinthiscase…thenprocessperfectlycentred…thenprocessnotcentred(checkprocessmeanagainstdesignnominal)CpandCpkIndicesandDefects
(bothtailsofthenormaldistribution)Pp=Ppk=1,3363ppmdefects=0,006%Cp=Cpk=1,670,6ppmdefects=0,00006%Note:PpmrejectratescalculatedfromCp&CpkarebasedontheshorttermvariationwhichmaynotrepresentthelongtermrejectrateTheEffectsofCpkandCponFFRExercise2:CpandCpkCalculateCpandCpkforthe100measurementsinthefile"Dataexercise1.xls"DeterminetheapproximateCpandCpkforthe4slepopulationsonthefollowingpageShouldactionsbemadetoimprovetheseprocesses.Ifyes,which?EstimateCpandCpk?Thewidthofthenormaldistributionsshowninclude±3*sLSLUSLA)LSLUSLB)LSLUSLC)USLLSLD)EstimateCpandCpk?-A)LSLUSLA)MeanandnominalUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-B)LSLUSLB)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-C)LSLUSLC)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-DUSLLSLD)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sSection4.UseoftheNMPDataCollectionSpreadsheetExleofhowtoCollectData1. Runinandstabiliseprocess2. Notethemainparametersforreference3. Whentheprocessisstablerunthetoolfor10hours3. Take5partsoutfromeachcavityeveryhalfhourandmarkthemwithtime,dateandcavity.Total20setsof5partsfromeachcavitymustbemade,oraccordingtoagreement.4. Afterthelastslelotnotethemainprocessparametersforreference5. Measureandrecordthemainfunctionalcharacteristics(whitediamonds)6. FilldataintotheNMPdatacollectionspreadsheet7. Analyse!SeeDMY00019-ENClassificationandMarkingofFunctionalCharact
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郴电国际招聘笔试真题2024
- 衢州市教育局直属公办学校招聘教师笔试真题2024
- 2025年机械原理理论试题
- 截一个几何体-教学设计
- 人工智能伦理与技术发展-洞察阐释
- 重庆精细铁粉生产线项目可行性研究报告(范文模板)
- 污水处理企业经营管理方案
- 第一课 在美术世界中遨游 教材 教案 讲义 教学设计 教学参考 教学案例(初一美术第十三册(人美版))
- 坪山-龙湖产业协作示范园项目可行性研究报告
- 2025至2030年中国瓷器壁挂行业投资前景及策略咨询报告
- GB/T 45611-2025钻石鉴定与分类
- 2025至2030年中国猪预混料行业投资前景及策略咨询研究报告
- 铁路客车内部装修设计优化方案
- 2025年浙江省温州市乐清市中考二模语文试题(含答案)
- 2025年中考第一次模拟考试(陕西卷)(参考答案及评分标准)
- 鲜花颜色搭配培训课件
- 安检服务课件
- 2025年中考化学复习新题速递之创新实验(2025年4月)
- 2025-2030年中国电感市场趋势分析及投资发展战略研究报告
- (人教版)2025年中考生物真题试题(含解析)
- 直招军官面试真题及答案
评论
0/150
提交评论