版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.2.下列说法正确的是()A.四条边相等的平行四边形是正方形B.一条线段有且仅有一个黄金分割点C.对角线相等且互相平分的四边形是菱形D.位似图形一定是相似图形3.如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:①;②;③;④平分;⑤四边形是菱形.其中正确的是()A.①②③ B.①③④ C.①②⑤ D.②③⑤4.如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为()A.4 B.3 C.2.5 D.55.若一组数据1.2.3.x的极差是6,则x的值为().A.7 B.8 C.9 D.7或6.若实数a,b,c满足,且,则函数的图象一定不经过A.第四象限 B.第三象限 C.第二象限 D.第一象限7.如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为()A.(,) B.(1,5) C.(1.) D.(5,)8.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或- B.或- C.或- D.或-9.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形10.如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0二、填空题(每小题3分,共24分)11.不等式的正整数解的和______;12.已知,是二元一次方程组的解,则代数式的值为_____.13.如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)14.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.15.如图,△ABC中,已知M、N分别为AB、BC的中点,且MN=3,则AC的长为_____.16.如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了_____个单位长度.17.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.18.化简的结果是______三、解答题(共66分)19.(10分)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.20.(6分)已知x=﹣1,y=+1,求x2+xy+y2的值.21.(6分)在直角坐标系中,反比例函数y=(x>0),过点A(3,4).(1)求y关于x的函数表达式.(2)求当y≥2时,自变量x的取值范围.(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.22.(8分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)求△BDG的面积.23.(8分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.(1)试说明AD⊥BC.(2)求AC的长及△ABC的面积.(3)判断△ABC是否是直角三角形,并说明理由.24.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)25.(10分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.(1)证明:;(2)判断与的位置关系,并证明你的结论;(3)求的长.26.(10分)已知,,为的三边长,并且满足条件,试判断的形状.
参考答案一、选择题(每小题3分,共30分)1、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.2、D【解析】
直接利用位似图形的性质以及矩形、菱形的判定方法分别分析得出答案.【详解】解:A、四条边相等的平行四边形是菱形,故此选项错误;B、一条线段有且仅有一个黄金分割点不正确,一条线段有两个黄金分割点,故此选项错误;C、对角线相等且互相平分的四边形是矩形,故此选项错误;D、位似图形一定是相似图形,正确.故选:D.【点睛】此题主要考查了位似图形的性质以及矩形、菱形的判定方法,正确掌握相关性质与判定是解题关键.3、B【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【详解】解:∵四边形ABCD是平行四边形
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E
是OC中点,
∴BE⊥AC,故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG
∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
∵BG=EF,AB∥CD∥EF
∴四边形BGFE是平行四边形,
∴GF=BE,且BG=EF,GE=GE,
∴△BGE≌△FEG(SSS)故③正确
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
若四边形BEFG是菱形
∴BE=BG=AB,
∴∠BAC=30°
与题意不符合,故⑤错误
故选:B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.4、C【解析】
利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵,点是的中点,∴AD=BD=CD=AB=1,∵BF=DF,BE=EC,∴EF=CD=2.1.故选:C.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.5、D【解析】试题分析:根据极差的定义,分两种情况:x为最大值或最小值:当x为最大值时,;当x是最小值时,.∴x的值可能7或.故选D.考点:1.极差;2.分类思想的应用.6、C【解析】
先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【详解】解:,且,,,的正负情况不能确定,,函数的图象与y轴负半轴相交,,函数的图象经过第一、三、四象限.故选C.【点睛】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.7、B【解析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P关于y轴的对称点的坐标是(1,5),故选B8、D【解析】
分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【详解】如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.【点睛】考查了一次函数的综合题,解题关键是运用数形结合思想.9、C【解析】
先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【点睛】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.10、A【解析】
根据二次根式的被开方数是非负数建立不等式组即可求出x的值,进而求出y值,最后代入即可求出答案.【详解】解:∵y=+2,∴,解得x=1,∴y=2,∴(﹣x)y=(﹣1)2=1.故选A.【点睛】本题考查了二次根式的性质.牢记二次根式的被开方数是非负数这一条件是解题的关键.二、填空题(每小题3分,共24分)11、3.【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.【详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【点睛】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.12、1【解析】
依据平方差公式求解即可.【详解】,,.故答案为:1.【点睛】本题主要考查的是二元一次方程组的解和平方差公式,发现所求代数式与已知方程组之间的关系是解题的关键.13、180°﹣n°【解析】
由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.【点睛】本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.14、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.15、6【解析】
由题意可知,MN是三角形ABC的中位线,然后依据三角形的中位线定理求解即可。【详解】解:∵M、N分别为AB、BC的中点,∴MN是△ABC的中位线,∴.AC=2MN=2×3=6.故答案为:6.【点睛】本题主要考查的是三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.16、1【解析】
根据已知条件得到OA=8,OB=6,根据勾股定理得到,根据矩形的性质即可得到结论.【详解】解:∵A、B两点的坐标分别为(0,8)和(6,0),∴OA=8,OB=6,∴,∵四边形AOBC是矩形,∴AC+BC=OB+OA=11,∴11﹣10=1,∴橡皮筋被拉长了1个单位长度,故答案为:1.【点睛】本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.17、1【解析】
利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=×1×4=1.
故答案为1.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;
菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).
记住菱形面积=ab(a、b是两条对角线的长度).18、﹣1【解析】分析:直接利用分式加减运算法则计算得出答案.详解:==.故答案为-1.点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.三、解答题(共66分)19、(1)4(2m+n)(m+2n);(2).【解析】
(1)直接利用平方差公式分解因式得出答案;
(2)直接提取公因式,再利用完全平方公式分解因式,进而把已知代入求出答案.【详解】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)x2+xy+y2=(x2+2xy+y2)=(x+y)2,当x+y=1时,原式=×12=.【点睛】此题主要考查了公式法分解因式,正确运用公式是解题关键.20、1【解析】
根据x、y的值,可以求得题目中所求式子的值.【详解】解:∵x=﹣1,y=+1,∴x+y=2,xy=2,∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.【点睛】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.21、(1);(2)当时,自变量的取值范围为;(3)①,②,③,④,.【解析】
(1)把A的坐标代入解析式即可(2)根据题意可画出函数图像,观察函数图象的走势即可解答(3)根据题意PQ在不同交点,函数图象与正方形的位置也不一样,可分为四种情况进行讨论【详解】(1)反比例函数,过点,,.(2)如图,时,,观察图象可知,当时,自变量的取值范围为.(3)有四种情况:①如图1中,四边形是正方形,,,,,,,.②如图2中,四边形是正方形,、关于轴对称,设代入中,,或(舍弃),,.③如图3中,作轴于.四边形是正方形,,易证,,,,,④如图4中,作轴于,轴于.四边形是正方形,可得,,,设,则,,,,设,则有,,,,,.【点睛】此题考查反比例函数综合题,解题关键在于在于利用已知点代入解析式求值22、(1)见解析;(2)【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC=BC′,∠GBD=∠DBC,从而得出AD=BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.【详解】(1)证明:∵四边形ABCD为矩形∴AD=BC,AB=DC,AD∥BC,∠BAD=90°∴∠GDB=∠DBC由折叠的性质可得BC=BC′,∠GBD=∠DBC∴AD=BC′,∠GBD=∠GDB∴GD=GB∴AD-GD=BC′-GB∴AG=C′G;(2)解:设GD=GB=x,则AG=AD-GD=8-x在Rt△ABG中即解得:即∴S△BDG=【点睛】此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.23、(1)见解析;(2)15,150;(3)是【解析】试题分析:(1)根据勾股定理的逆定理即可判断;(2)先根据勾股定理求得斜边的长,再根据直角三角形的面积公式即可求得结果;(3)根据勾股定理的逆定理即可判断.(1)∴是直角三角形∴即;(2)∵,且点为边上的一点∴∴由勾股定理得:∴;(3)是直角三角形,∴是直角三角形.考点:本题考查的是勾股定理,直角三角形的面积公式,勾股定理的逆定理点评:解答本题的根据是熟练掌握勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.24、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.试题解析:探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业鲜花绿植租赁服务协议模板版
- 全新在线教育平台建设与运营合同(2024版)3篇
- 2024年区域经济发展引资协议版B版
- 2024年国有企业临时工聘用合同样本版B版
- 2024年企业员工派遣服务协议范本版B版
- 全新虚拟现实体验馆设计与建设合同2篇
- 2024年城市供水特许经营权协议
- 二零二四年度物联网应用开发与维护合同3篇
- 2024年医疗机构间病患转诊合作协议版B版
- 2024二手房不过户合同范文
- 二十四节气与三角函数课件 高一上学期数学人教A版(2019)必修第一册
- 食品安全教学课件
- 口腔颌面部肿瘤概论(口腔颌面外科课件)
- 澳门(2024年-2025年小学四年级语文)人教版专题练习(下学期)试卷及答案
- 3.1细胞膜的结构和功能说课课件-高一上学期生物人教版(2019)必修1
- 【飞科电器企业存货管理问题及优化建议9700字】
- 房屋安全鉴定理论考试复习题库(含答案)
- 亚马逊合伙运营协议书模板
- 情商测试题附答案+智商侧测试题
- 外研版(2019)必修第一册《unit 3 family matters》同步练习卷(七选五专练)
- 2021年学校《学宪法讲宪法》第八个国家宪法日班会学习课件
评论
0/150
提交评论