山东省德州市2018-2019学年高一数学上学期期末考试试卷(含解析)_第1页
山东省德州市2018-2019学年高一数学上学期期末考试试卷(含解析)_第2页
山东省德州市2018-2019学年高一数学上学期期末考试试卷(含解析)_第3页
山东省德州市2018-2019学年高一数学上学期期末考试试卷(含解析)_第4页
山东省德州市2018-2019学年高一数学上学期期末考试试卷(含解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市2018_2019学年高一数学上学期期末考试一试卷(含分析)山东省德州市2018_2019学年高一数学上学期期末考试一试卷(含分析)山东省德州市2018_2019学年高一数学上学期期末考试一试卷(含分析)山东省德州市2018-2019学年高一上学期期末考试数学试题一、选择题(本大题共10小题,共40.0分)1.已知全集2,3,4,5,6,,3,5,,6,,则A.B.C.3,5,6,D.3,4,【答案】B【分析】【分析】依照并集与补集的定义,写出运算结果.【详解】3,5,,6,,则3,5,6,,又全集2,3,4,5,6,,则.应选:B.【点睛】此题观察了会集的定义与运算问题,是基础题.2.某高中学校共有学生

3000名,各年级人数以下表,已知在全校学生中随机抽取

1名学生,抽到高二年级学生的概率是

现用分层抽样的方法在全校抽取

100名学生,则应在高三年级抽取的学生的人数为年级

一年级

二年级

三年级学生人数

1200

x

yA.25B.26C.30D.32【答案】A【分析】【分析】由题意得高二年级学生数量为1050,高三年级学生数量为750,由此用分层抽样的方法能求出应在高三年级抽取的学生的人数.【详解】由题意得高二年级学生数量为:,高三年级学生数量为

,现用分层抽样的方法在全校抽取

100名学生,设应在高三年级抽取的学生的人数为n,则,解得.应选:A.【点睛】此题观察应应在高三年级抽取的学生的人数的求法,观察分层抽样的性质等基础知识,观察运算求解能力,是基础题.3.函数

的定义域是A.

B.

C.

D.【答案】C【分析】【分析】依照二次根式和对数函数的定义,求出使函数分析式有意义的自变量取值范围.【详解】函数,,,解得

,函数

y的定义域是

.应选:C.【点睛】此题观察了求函数定义域的应用问题,是基础题.求函数定义域的注意点:(1)不要对分析式进行化简变形,省得定义域变化;(2)当一个函数由有限个基本初等函数的和、差、积、商的形式组成时,定义域一般是各个基本初等函数定义域的交集;(3)定义域是一个会集,要用会集或区间表示,若用区间表示,不能够用“或”连接,而应该用并集符号“∪”连接。4.已知点A.第一象限

,则P在平面直角坐标系中位于B.第二象限C.第三象限

D.第四象限【答案】B【分析】【分析】利用特别角的三角函数值的符号获取点的坐标,直接判断点所在象限即可.【详解】,.在平面直角坐标系中位于第二象限.应选:B.【点睛】此题观察了三角函数值的符号,观察了三角函数的引诱公式的应用,是基础题.5.如图,边长为2的正方形有一内切圆向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法获取圆周率的近似值为A.B.C.D.【答案】B【分析】【分析】由圆的面积公式得:,由正方形的面积公式得:,由几何概型中的面积型结合随机模拟试验可得:,得解.【详解】由圆的面积公式得:,由正方形的面积公式得:,由几何概型中的面积型可得:,所以,应选:B.【点睛】此题观察了圆的面积公式、正方形的面积公式及几何概型中的面积型,属简单题.6.依照表中供应的全部数据,用最小二乘法得出y关于x的线性回归方程是,则表中m的值为x810111214y2125m2835A.26

B.27

C.28

D.29【答案】

A【分析】【分析】第一求得

x的平均值,尔后利用线性回归方程过样本中心点求解

m的值即可.【详解】由题意可得:

,由线性回归方程的性质可知:

,故

.应选:

A.【点睛】此题观察回归分析,观察线性回归直线过样本中心点,在一组拥有相关关系的变量的数据间,这样的直线能够画出好多条,而其中的一条能最好地反响x与y之间的关系,这条直线过样本中心点.7.函数的零点个数为A.0

B.1

C.2

D.3【答案】

D【分析】【分析】依照分段函数的表达式,分别求出当

和时的零点个数即可.【详解】当

时,由

,作出函数

在时的图象如图:由图象知两个函数有两个交点,即此时函数当时,由得

,得

在时有两个零点,,此时有一个零点,综上函数

共有

3个零点,应选:D.【点睛】此题主要观察函数零点个数的判断,利用分段函数的分析式,分别进行求解是解决此题的要点.关于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,能够互相转变;在转变成两个函数交点时,若是是一个常函数一个含参的函数,注意让含参的函数式子尽量简单调些。扔掷一枚质地平均的骰子,落地后记事件A为“奇数点向上”,事件B为“偶数点向上”,事件C为“2点或4点向上”则在上述事件中,互斥但不对峙的共有A.3对B.2对C.1对D.0对【答案】C【分析】【分析】利用互斥事件、对峙事件的定义直接求解.【详解】扔掷一枚质地平均的骰子,落地后记事件A为“奇数点向上”,事件B为“偶数点向上”,事件C为“2点或4点向上”,事件A与事件B是对峙事件;事件A与事件C是互斥但不对峙事件;事件B与事件C能同时发生,不是互斥事件.故互斥但不对峙的共有1对.应选:C.【点睛】此题观察互斥但不对峙的判断,观察对峙事件、互斥事件等基础知识,观察运算求解能力,是基础题.9.为比较甲、乙两地某月14时的气温情况,随机采用该月中的5天,将这5天中14时的气温数据(单位:℃)制成以下列图的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中依照茎叶图能获取的统计结论的编号为()A.①③

B.①④

C.②③

D.②④【答案】B【分析】由题中茎叶图知,

,;,.所以<,>.【此处有视频,请去附件查察】已知扇形的周长为C,当该扇形面积获取最大值时,圆心角为A.B.1radC.D.2rad【答案】D【分析】【分析】依照扇形的面积和周长,写出头积公式,再利用基本不等式求出的最大值,以及对应圆心角的值,即可得解.【详解】设扇形的圆心角大小为,半径为r,依照扇形的面积为,周长为,获取,且,,又,当且仅当,即时,“”建立,此时获取最大值为,对应圆心角为.应选:D.【点睛】此题观察了扇形的面积与周长的应用问题,也观察了基本不等式的应用问题,是中档题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必定为定值)、“等”(等号获取的条件)的条件才能应用,否则会出现错误.二、填空题(本大题共7小题,共28.0分)以下函数中值域为R的有______.A.BC.D.【答案】ABD【分析】【分析】分别判断函数的单调性和取值范围,结合函数的值域进行求解即可.【详解】

为增函数,函数的值域为

R,满足条件.B.由

,能够取遍

的每一个值,此时的值域为

R,满足条件.C.

,当

时,

,当

时,

,即函数的值域为,不满足条件.是增函数,x能取遍R中的每一个值,故函数的值域为R,满足条件.故答案为:ABD.【点睛】此题主要观察函数值域的求解,结合函数单调性的性质是解决此题的要点.求函数值域的基本方法:(1)察见解:一些简单函数,经过察见解求值域;(2)配方法:“二次函数类”用配方法求值域;(3)换元法:形如(a,,,d均为常数,且≠0)的bcac函数常用换元法求值域,形如的函数用三角函数代换求值域;(4)分别常数法:形如的函数可用此法求值域;(5)单调性法:函数单调性的变化是求最值和值域的依照,依照函数的单调区间判断其增减性进而求最值和值域;(6)数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.12.某学校为了检查学生在一周生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图以下列图,其中支出在元的学生有60人,则以下说法正确的选项是______.A.样本中支出在元的频率为B.样本中支出很多于40元的人数有132C.n的值为200D.若该校有2000名学生,则定有600人支出在元【答案】BC【分析】【分析】在A中,样本中支出在元的频率为;在B中,样本中支出很多于40元的人数有:;在C中,;若该校有2000名学生,则可能有600人支出在元.【详解】由频率分布直方图得:在A中,样本中支出在元的频率为:,故A错误;在B中,样本中支出很多于40元的人数有:,故B正确;在C中,,故n的值为200,故C正确;D.若该校有2000名学生,则可能有600人支出在元,故D错误.故答案为:BC.【点睛】此题观察命题真假的判断,观察频率分布直方图的性质等基础知识,观察运算求解能力,观察数形结合思想,是基础题.13.符号表示不高出x的最大整数,如,,定义函数:,则以下命题正确的选项是______.A.B.当时,C.函数的定义域为R,值域为D.函数是增函数、奇函数【答案】ABC【分析】【分析】由题意可得表示数x的小数部分,可得,当时,,即可判断正确结论.【详解】表示数x的小数部分,则,故A正确;当时,,故B正确;函数的定义域为R,值域为,故C正确;当时,,当时,,当时,,当时,,则,即有不为增函数,由,,可得,即有不为奇函数.故答案为:A,B,C.【点睛】此题观察函数新定义的理解和运用,观察函数的单调性和奇偶性的判断,以及函数值的求法,观察运算能力和推理能力,属于中档题.14.已知,,且,则m的取值范围是______.【答案】【分析】【分析】依照A与B的子集关系,借助数轴求得a的范围.【详解】由于,所以,由已知,得,故m的取值范围是.故答案为:.【点睛】此题观察了会集的子集关系及其运算,属于简单题.15.已知且,函数的图象恒过定点,若P在幂函数的图象上,则P______.【答案】27【分析】【分析】依照指数函数的图象恒过定点,求出点P的坐标,代入幂函数的分析式求出,再计算的值.【详解】令,解得,此时,指数函数的图象恒过定点;设幂函数,为实数,由点P在的图象上,,解得,,.故答案为:27.【点睛】此题观察了指数函数与幂函数的应用问题,是基础题.16.已知,,则______;______.【答案】(1).(2).【分析】【分析】把已知等式两边平方,求出的值,再利用完好平方公式求出求解再结合同角三角函数间的基本关系可求得的值.【详解】,

的值,联立,即

.;,,,

,即

,.联立,解得,..故答案为:;.【点睛】此题观察同角三角函数间的基本关系,求得用的还有三姐妹的应用,一般结合,能够知一求三.17.已知偶函数的图象过点,且在区间

是要点,也是难点,常,,这三者我们称为三姐妹,上单调递减,则不等式的解集为

______.【答案】【分析】【分析】依照函数奇偶性和单调性的性质作出的图象,利用数形结合进行求解即可.【详解】偶函数的图象过点,且在区间上单调递减,函数的图象过点,且在区间上单调递加,作出函数的图象大体如图:则不等式等价为或,即或,即不等式的解集为,故答案为:【点睛】此题主要观察不等式的解集的计算,依照函数奇偶性和单调性的性质作出的图象是解决此题的要点.三、解答题(本大题共6小题,共82.0分)18.计算(2)已知:,求【答案】(1)4;(2)2;(3)【分析】【分析】进行分数指数幂的运算即可;进行对数的运算即可;依照可求出,进而求出,带入即可.【详解】原式;原式;;;;;;.【点睛】观察分数指数幂和对数的运算,完好平方式的运用.题目比较基础.19.从某居民区随机抽取10个家庭,获取第i个家庭的月收入单位:千元与月存储单位:千元的数据资料,算得,,,附:线性回归方程中,,,其中,为样本平均值.求家庭的月存储y对月收入x的线性回归方程;判断变量x与y之间是正相关还是负相关;若该居民区某家庭月收入为7千元,展望该家庭的月存储.【答案】(1);(2)见分析;(3)千元【分析】【分析】由题意求出,,依照,,代入公式求值,又由,得出进而获取回归直线方程;变量y的值随x的值增加而增加,可知x与y之间是正相关还是负相关;代入即可展望该家庭的月存储.【详解】由题意知,,,,,那么:,.,.由.,故所求回归方程为

.由于变量

y的值随

x的值增加而增加,即

.故x与y之间是正相关.将代入回归方程能够展望该家庭的月存储为千元.【点睛】此题观察回归分析,观察线性回归直线过样本中心点,在一组拥有相关关系的变量的数据间,这样的直线能够画出好多条,而其中的一条能最好地反响x与y之间的关系,这条直线过样本中心点.线性回归方程适用于拥有相关关系的两个变量,关于拥有确定关系的两个变量是不适用的,线性回归方程获取的展望值是展望变量的估计值,不是正确值.20.已知角的终边上有一点,其中.求的值;求的值.【答案】(1)见分析;(2)【分析】【分析】任意角的三角函数的定义,求得和的值,可得的值;先求得的值,利用同角三角函数的基本关系中的平方关系,把式子变成齐次式,代入求值即可.【详解】角的终边上有一点,其中,,当时,当时,

,,

,,

.由题意可得

,.【点睛】此题主要观察任意角的三角函数的定义,

同角三角函数的基本关系,

属于基础题.常见的变形式有:

(1)弦切互化法

:主要利用公式

tanα=

;形如

,asin

2x+bsinxcosx+ccos2x等种类可进行弦化切;(2)“1”的灵便代换法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等;(3)和积变换法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的关系进行变形、转化.21.现有

8名马拉松比赛志愿者,

其中志愿者

,,精晓日语,

,,精晓俄语,

,精晓英语,从中选出精晓日语、俄语和英语的志愿者各1名,组成一个小组.列出基本事件;求被选中的概率;求和不全被选中的概率.【答案】(1)见分析;(2);(3)【分析】【分析】利用列举法能求出基本事件;用M表示“被选中”,利用列举法求出M中含有

6个基本事件,由此能求出被选中的概率;用N表示“和不全被选中”,则表示“和全被选中”,利用对峙事件概率计算公式能求出和不全被选中的概率.【详解】现有8名马拉松比赛志愿者,其中志愿者,,精晓日语,,,精晓俄语,,精晓英语,从中选出精晓日语、俄语和英语的志愿者各1名,组成一个小组.基本事件空间,,,,,,,,,,,,,,,,,,共18个基本事件.由于每个基本事件被选中的机遇相等,这些基本事件是等可能发生的,用M表示“被选中”,则

,,

,含有

6个基本事件,被选中的概率

.用N表示“

和不全被选中”,则

表示“

和全被选中”,,

,含有

3个基本事件,和不全被选中的概率.【点睛】此题观察基本事件、古典概型概率的求法,观察列举法、对峙事件概率计算公式等基础知识,观察运算求解能力,是基础题.关于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得悉足条件的事件个数除以总的事件个数即可.22.据检查,某地区有300万从事传统农业的农民,人均年收入6000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,

对当地的农产品进行深加工,同时吸取当地部分农民进入加工企业工作,据估计,若是有

万人进企业工作,那么剩下从事传统农业的农民的人均年收入有望提高

,而进入企业工作的农民的人均年收入为元.在建立加工企业后,多少农民进入企业工作,能够使剩下从事传统农业农民的总收入最大,并求出最大值;为了保证传统农业的顺利进行,限制农民加入加工企业的人数不能够高出总人数的,当地政府如何引导农民,即x取何值时,能使300万农民的年总收入最大.【答案】(1)见分析;(2)见分析【分析】【分析】依照题意建立函数关系结合二次函数的单调性的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论