版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5.2向量在物理中的应用一、向量与物理学的联系
向量是从物理学中抽象出来的数学概念,在物理中,通常被称为矢量!在物理学,工程技术中有广泛的应用,因此,我们要明确掌握用向量研究物理问题的相关知识!1.向量既是有大小又有方向的量,物理学中,力、速度、加速度、位移等都是向量!2.力、加速度、位移等的合成和分解就是向量的加减法,运动的叠加也用到向量的合成!3.功的定义即是F与所产生位移S的数量积例1:同一平面内,互成
的三个大小相等的共点力的合力为零。BO120ºabcDCA证:如图,用a,b,c表示这3个共点力,且a,b,c互成120°,模相等按照向量的加法运算法则,有:
a+b+c=a+(b+c)=a+OD又由三角形的知识知:三角形OBD为等边三角形,故a与OD共线且模相等例2:在生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂夹角越小越省力!你能从数学的角度解释这个现象吗?分析:上述的问题跟如图所示的是同个问题,抽象为数学模型如下:
F2θF1FG用向量F1,F2,表示两个提力,它们的合向量为F,物体的重力用向量G来表示,F1,F2的夹角为θ,如右图所示,只要分清F,G和θ三者的关系,就得到了问题得数学解释!θF1FGF2cos2θ探究:(1)θ为何值时,最小,最小值是?F1(2)能等于吗?为什么?F1GF1解:不妨设=,由向量的
平行四边形法则,力的平衡以及直角三角形的知识,可以知道:
=(*)
通过上面的式子,有:当θ由0º到180º逐渐变大时,由0º到90º逐渐变大,的值由大逐渐变小,因此:由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力!
F2F1Gcos2θ2θcos2θ2F1答:在(*)式中,当θ=0º时,最大,最小且等于cos2θF1G2答:在(*)中,当=
即θ=120º时,=
cos2θ12F1GF2例3:如图,一条河流的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸。已知船的速度
=10km/h,水流的速度=2km/h。问:(1)行驶航程最短时,所用的时间是多少?
(2)行驶时间最短时,所用的时间是多少?v1v2分析:(1)因为两平行线之间的最短距离是它们的公垂线段。所以只有当小船的实际运动方向(即合运动方向)是垂直于河岸的方向时,小船的航程最小。
(2)小船过河的问题有一个特点,就是小船在垂直于河岸的方向上的位移是不变的,我们只要使得在垂直于河岸方向上的速度最大,小船过河所用的时间就最短,河水的速度是沿河岸方向的,这个分速度和垂直于河岸的方向没有关系,所以使小船垂直于河岸方向行驶(小船自身的速度,方向指向河对岸),小船过河所用时间才最短。500mA把物理问题转化为数学模型为:解(1)=
=
所以
t==60
答:行驶的航程最短时,所用的时间是3.1min。v-v12v2296dv0.596~~3.1(min)
(2)t==60=3
(min)答:行驶的时间最短时,所用的时间是3mindv10.510(1)ABv1v2v(2)v2v1vkm/h练习;(1)如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N,则每根绳子的拉力是————。120º10N(2)如图,今有一艘小船位于d=60m宽的河边P处,从这里起,在下游=80m处河流有一处瀑布,若河水的流速方向由上游指向下游(与河岸平行),水速大小为5m/s为了使小船能安全过河,船的划速不能小于多少?当划速最小时,划速方向如何?PQ瀑布θQ,60mPQ瀑布θV船V水V合的方向θPQ从图上看,哪个速度(向量的模)最小?分析:用向量来分别表示河流的水流速度、船速和它们的合速度为、和,由题意,船的实际速度为向量其方向为临界方向,船只要朝着这个方向行驶,它就不会掉下瀑布,如(右)图所示:PQV船V水V合=+V船V水V合解:由题意知:其方向为临界方向,设和夹角为θ,则最小划速为:sinθ==所以:最小的船速应为:V船V水V合=+PQV水V合v船=v水sinθv船=5×sinθ=5
×=3(m/s)提问:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024住宿酒店合同酒店商务住宿合同
- 北师大版四年级上册数学第三单元 乘法 测试卷【夺分金卷】
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷【含答案】
- 2024年改性丙烯酸树脂涂饰剂项目建议书
- 安利专项工程师考核练习试题附答案
- 智研咨询发布:中国智慧医疗行业市场全景调查及投资前景预测报告
- 盐城师范学院《商务智能技术与应用》2022-2023学年第一学期期末试卷
- 盐城师范学院《民间艺术》2023-2024学年第一学期期末试卷
- 盐城师范学院《伦理学》2021-2022学年第一学期期末试卷
- 盐城师范学院《教育测量与评价》2022-2023学年第一学期期末试卷
- 音乐家海顿课件
- 轮机工程专业职业生涯规划
- 中职教育二年级上学期电子与信息《路由基础-动态路由协议OSPF原理与配置》微教案
- 企业公司合作方案
- 起重机安装安全协议书
- 早产临床防治指南(2024版)解读
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- VDA6.3-2023过程审核检查表
- 危重患者的早期识别与管理
- 小学英语单元作业设计与实施探究
- (高清版)JTG 2120-2020 公路工程结构可靠性设计统一标准
评论
0/150
提交评论