版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.42.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个 B.1个 C.2个 D.3个3.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.4.如图,将平行四边形纸片折叠,使顶点恰好落在边上的点处,折痕为,那么对于结论:①,②.下列说法正确的是()A.①②都错 B.①对②错 C.①错②对 D.①②都对5.下列说法不正确的是()A.四边都相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.对角线互相垂直的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形6.已知关于的一元二次方程的一个根是0,则的值为()A. B. C. D.7.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为()A. B. C. D.8.已知矩形ABCD如图,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=()A. B. C.2 D.9.如图,已知,是的角平分线,,则点D到的距离是()A.3 B.4 C.5 D.610.如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.一个多边形的每个外角都是,则这个多边形的边数是________.12.用反证法证明“如果,那么.”是真命题时,第一步应先假设________
.13.已知点M(-1,),N(,-2)关于x轴对称,则=_____14.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.15.将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.16.如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.17.如果一个n边形的内角和等于它的外角和的3倍,则n=______.18.如果关于x的不等式组的解集是,那么m=___三、解答题(共66分)19.(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.20.(6分)在△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度ɑ(0°<ɑ<180°)得到△ADE,连接CE、BD,BD与CE相交于点F。(1)求证:BD=CE(2)当ɑ等于多少度时,四边形AFDE是平行四边形?并说明理由。21.(6分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性的方案是________;方案一:调查八年级部分男生;方案二:调查八年级部分女生;方案三:到八年级每个班去随机调查一定数量的学生.(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:①本次调查学生人数共有_______名;②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.22.(8分)已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.23.(8分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?24.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长25.(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求直线所对应的函数表达式;(2)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.26.(10分)已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.2、D【解析】
①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D.3、D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.4、D【解析】
根据折叠重合图形全等,已经平行四边形的性质,可以求证①②均正确.【详解】折叠后点落在边上的点处,又平行四边形中,,又平行四边形中,,是平行四边形,.故选D.【点睛】本题综合考查全等三角形的性质、平行四边形的性质、平行线的判定、平行四边形的判定.5、C【解析】
由平行四边形的判定可求解.【详解】解:A、四边都相等是四边形是菱形,也是平行四边形;故该选项不合题意;
B、两组对角分别相等的四边形是平行四边形,故该选项不合题意;
C、对角线互相垂直的四边形不是平行四边形,故该选项符合题意;
D、两组对边分别平行的四边形是平行四边形,故该选项不合题意;
故选:C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.6、C【解析】
根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.【详解】解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,解得:m=±2,∵m﹣2≠0,∴m=﹣2,故选:C.【点睛】本题逆用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣2≠0,因此在解题时要重视解题思路的逆向分析.7、B【解析】
根据等腰直角三角形的性质和三角函数分别求B、C两点的坐标,利用待定系数法求直线的表达式.【详解】∵A点坐标为(1,0),∴OA=1,∵∠BCA=60°,∠α=101°,∴∠BAC=101°﹣60°=41°,∴△AOB是等腰直角三角形,∴AO=BO=1,∴B(0,1).∵∠CBO=90°﹣∠BCA=30°,∴BC=2CO,BO==CO=1,∴CO=,∴C(﹣,0),把B(0,1)和C(﹣,0)代入y=kx+b中得:,解得:,∴直线BC的表达式为:y=x+1.故选B.【点睛】本题考查了利用待定系数法求直线的解析式、含30度角的直角三角形、等腰直角三角形的性质及图形与坐标特点,熟练掌握图形与坐标特点是本题的关键.8、D【解析】
由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴DE=,∵点F、G分别为AD、AE的中点,∴FG=.故选D.【点睛】本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.9、A【解析】
首先过点D作于E,由在中,是的角平分线,根据角平分线的性质,即可得.【详解】过点D作于E,∵在中,,即,∴是的角平分线,∴,∴点D到的距离为3,故选A.【点睛】本题考查了角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解此题的关键.10、A【解析】
先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.【详解】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90∘,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.即BC×OE=BO×AB=k=6.∴,故选:A.【点睛】本题主要考查相似三角形判定定理,熟悉掌握定理是关键.二、填空题(每小题3分,共24分)11、【解析】
正多边形的外角和是360°,而每个外角是18°,即可求得外角和中外角的个数,即多边形的边数.【详解】设多边形边数为n,于是有18°×n=360°,解得n=20.即这个多边形的边数是20.【点睛】本题考查多边形内角和外角,熟练掌握多边形的性质及计算法则是解题关键.12、a≥0【解析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【详解】解:“如果,那么.”是真命题时
,用反证法证明第一步应假设.故答案为:【点睛】本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.13、1【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.【详解】根据题意,得b=-1,a=2,则ba=(-1)2=1,
故答案是:1.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.14、7.2【解析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.15、y=1x﹣1.【解析】
解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=1x-1.16、1【解析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.【详解】解:设A(1,m).把A(1,m)代入y=6﹣x得:m=﹣1+6=4,把A(1,4)代入y=kx得4=1k,解得k=1.故答案是:1.【点睛】本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.17、1【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.18、-3【解析】
根据“同大取大”的法则列出关于m的不等式,求出m的取值范围即可.【详解】解:∵m+2>m-1又∵不等式组的解集是x>-1,∴m+2=-1,∴m=-3,故答案为:-3.【点睛】本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则解答即可.三、解答题(共66分)19、(1)见解析;(2)矩形ABCD的面积=1.【解析】
(1)根据对边平行得四边形OCED是平行四边形,由原矩形对角线相等且互相平分得OC=OD,所以四边形OCED是菱形;(2)根据三角形面积公式和矩形的面积等于4个△DEC的面积解答即可.【详解】(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∴▱OCED是菱形;(2)∵点E到CD的距离为2,CD=3,∴△DEC的面积=,∴矩形ABCD的面积=4×3=1.【点睛】本题考查了矩形的性质,是常考题型,难度不大;需要熟练掌握矩形、菱形的边、角、对角线的关系,不能互相混淆.20、(1)见解析;(2)当ɑ=108°时,四边形AFDE是平行四边形.【解析】
(1)根据旋转的性质、全等三角形的判定定理证明△ABD≌△ACE,证明结论;(2)根据平行四边形的判定定理证明.【详解】(1)证明:∵△ADE是由△ABC旋转得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)当ɑ=108°时,四边形AFDE是平行四边形。理由:∵∠BAD=108°,AB=AD,∴∠ABD=∠ADB=(180°−∠BAD)=36°∴∠DAE=∠ADB,∴AE//FD,又∵∠CAD=∠BAD-∠BAC=72°,∴∠ADE=∠AED=∴∠CAD=∠ADE∴AF//ED∴四边形AFDE是平行四边形【点睛】考查的是旋转的性质、全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1)方案三;(2)①120;②216;③150.【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①由不了解的人数和所占的比例可得出调查总人数;②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。【详解】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图故答案为:216;③500×=150名故答案为:150【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22、(1)﹣2<a≤3;(2)1【解析】
(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据a的取值范围去掉绝对值符号,把代数式化简即可;【详解】解:(1)方程组解得:,∵x为非正数,y为负数;∴,解得:﹣2<a≤3;(2)∵﹣2<a≤3,即a﹣3≤0,a+2>0,∴原式=3﹣a+a+2=1.【点睛】本题考查的是解二元一次方程组、解一元一次不等式组、代数式的化简求值,熟练掌握并准确计算是解题的关键.23、(1)25人(2)37分(3)第二次测试中得4分的学生有15人、得5分的学生有30人.【解析】
(1)根据频数、频率和总量的关系:频数=总量频率计算即可.(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.【详解】解:(1)本次测试的学生中,得4分的学生有人.(2)本次测试的平均分平均分(分).(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据题意,得:,解得:.答:第二次测试中得4分的学生有15人、得5分的学生有30人.24、(1)详见解析;(2)详见解析;(3)【解析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x+(2x)=3,解得x=,所以BC=,AB=BC=,然后在Rt△ABD中利用勾股定理计算AD的长.【详解】(1)证明:∵∠ACB=90°,AC=BC,∴△ACB为等腰直角三角形,∴∠CAF=∠ACG=45°,∵CG平分∠ACB,∴∠BCG=45°,在△BCG和△CFA中,∴△BCG≌△CFA,∴BG=CF;(2)证明:连结AG,∵CG为等腰直角三角形ACB的顶角的平分线,∴CG垂直平分AB,∴BG=AG,∴∠GBA=∠GAB,∵AD⊥AB,∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,∴∠D=∠GAD,∴AG=DG,∴BG=DG,∵CG⊥AB,DA⊥AB,∴CG∥AD,∴∠DAE=∠GCE,∵E为AC边的中点,∴AE=CE,在△ADE和△CGE中,∴△ADE≌△CGE,∴DE=GE,∴DG=2DE,∴BG=2DE,∵△BCG≌△CFA,∴CF=BG,∴CF=2DE;(3)∵DE=1,∴BG=2,GE=1,即BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中,x+(2x)=3,解得x=,∴BC=,∴AB=BC=,在Rt△ABD中,∵BD=4,AB=,∴AD=.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线25、(1)y=2x-1;(2)存在点,Q(,),使以为顶点的四边形为平行四边形.【解析】
(1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准外协部件加工合作合同模板集版
- 2024安置房屋买卖合同附赠装修设计协议3篇
- 2024版二手房买卖合同中的合同终止后的资产清算与分配条款3篇
- 教育类实习报告模板集合十篇
- 2021届高考英语词性转换240词(考前必背自测版)
- 必修1WU-U5+B2U1-2课本短语默写
- 2024年度施工现场消防疏散指示标志安装及维护合同3篇
- 2024版临时用电突发事件应急预案合同3篇
- 2023年高考高频易错派生词大全教师版
- 2024年版房地产项目联合建设与运营协议版B版
- 落地式卸料平台技术交底
- 螺旋桨的几何形体及制造工艺
- 舞台机械保养说明
- 市政工程竣工验收资料
- 钢结构围挡工程技术标(共30页)
- 指导培养青年教师计划(历史)
- 《化学实验室安全与环保手册》
- 消防安全网格化管理表格样式
- 高考复习之——诗词鉴赏-景与情关系
- 重庆市高等教育学校收费标准一览表(公办)
- 闪光焊及缺陷
评论
0/150
提交评论