版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欢迎指导!第四节圆周角和圆心角的关系(一)第三章圆皋兰四中魏惠玲回顾与思考如图1,∠AOB是
角。OAB如图2,弧AB=弧CD,则∠AOB与∠COD的大小关系是:
。BAOCD圆心相等这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关.圆周角与圆心角的关系用心想一想,马到功成如图,当他站在B,D,E的位置射球时,对球门AC的张角的大小相等吗?你能观察到这三个角有什么共同特征吗?用心想一想,马到功成为解决这个问题我们先来研究一种角。观察图中的∠ABC,顶点在什么位置?角的两边有什么特点?ABC定义:顶点在圆上,并且角的两边和圆还有另一个交点,这样的角叫做圆周角.圆周角的定义
练一练1、下列各图中,哪一个角是圆周角?()2、图3中有几个圆周角?()(A)2个,(B)3个,(C)4个,(D)5个。3、写出图4中的圆周角:________________________BC∠CAB
、∠ACB、∠CBA用心想一想,马到功成我们再来研究圆周角的性质。为了解决这个问题,我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系。请同学们在圆上确定一条劣弧,画出它所对的圆心角与圆周角。AC用心想一想,马到功成归纳同学们的意见我们得到以下几种情况。①∠ABC的一边BC经过圆心O。②∠ABC的两边都不经过圆心O。③∠ABC的两边都不经过圆心O。请问∠ABC与∠AOC它们的大小有什么关系?说说你的想法,并与同伴进行交流。BAOC①ABCO②BACO③下面我们首先考虑同学们列举的一种特殊情况,即∠ABC的一边BC经过圆心O。BAOC∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO。∵OA=OB,∴∠ABO=∠BAO。∴∠AOC=2∠ABO,∴∠ABC=∠AOC。12如图,我们可以观察到∠AOC是△ABO的外角,∠ABC是△ABO的一个内角,它们两者存在一定关系.下面我们首先考虑同学们列举的一种特殊情况,即∠ABC的一边BC经过圆心O。BAOC∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO。∵OA=OB,∴∠ABO=∠BAO。∴∠AOC=2∠ABO,∴∠ABC=∠AOC。12那么当∠ABC的两边都不经过圆心O时,∠ABC与∠AOC又有怎样的大小关系呢?ABCOBACO我们可以考虑把这两种情况分别转化成刚才的特殊情形来考虑。ABCO也就是借用直径,连接BO并延长,与圆相交于点D。D(此时我们得到与图①同样的情形)132BAOC①∵∠1是△ABO的外角,∴∠1=∠2+∠3。∵OA=OB,∴∠2=∠3。∴∠1=2∠2,∴∠2=∠1。125412同理,∠4=∠5。12∴∠2+∠4=(∠1+∠5)。∴∠ABC=∠AOC。12BACOBAOC①如图,连接BO并延长,与圆相交于点D。(此时我们得到与图①同样的情形)D∵∠AOD是△ABO的外角,∴∠AOD=∠A+∠ABO。∵OA=OB,∴∠A=∠ABO。∴∠AOD=2∠ABD,∴∠ABD=∠AOD。12
??猜想:圆周角的度数与什么有关系?结论:一条弧所对的圆周角等于它所对的圆心角的一半定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
练一练1、如图6,已知∠ACB=20º,则∠AOB=_____,∠OAB=
.
40º70º130º2、如图7,已知圆心角∠AOB=1000,则∠ACB=_______。
3、如图8,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.
求证:∠ACB=2∠BAC.
我的收获概念的引入和定理的发现:定义:顶点在圆上,并且角的两边和圆还有另一个交点,这样的角叫做圆周角。定理:在同圆或等圆中,同弧或等弧所对的圆周
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年放射性核素遥控后装机项目评价分析报告
- 2024至2030年中国锡制杯垫行业投资前景及策略咨询研究报告
- 2023年洗碗清洁剂项目综合评估报告
- 2023年工程和技术研究与试验发展服务项目综合评估报告
- 2024年酒店家具项目综合评估报告
- 2024年轻工涂料项目成效分析报告
- 2024至2030年中国管带直料半自动蛇形弯管机数据监测研究报告
- 2024至2030年中国方便式料桶数据监测研究报告
- 2024至2030年中国小阴角线数据监测研究报告
- 足太阳膀胱经、穴1(题后含答案及解析)
- 垫片冲压模具设计毕业设计论文
- 常见矩形管规格表
- 高中学生社区服务活动记录表
- Python-Django开发实战
- 小学道法小学道法1我们的好朋友--第一课时ppt课件
- 配电箱安装规范
- 中英文商务派遣函样板
- 幼儿园大班主题教案《超市》含反思
- 弯臂车床夹具设计说明书
- 企业员工健康管理存在的问题与解决途径探讨
- 浅谈初中数学教学新课标理念的运用
评论
0/150
提交评论