版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1两条直线的位置关系第二章相交线与平行线1对顶角、补角和余角学习目标1.理解对顶角、补角、余角的概念;2.掌握对顶角、补角、余角的性质,并能运用它们的性质进行角的运算及一些实际问题.(重点、难点)观察下列图片,说一说直线与直线的位置关系.导入新课情境引入
生活中处处可见道路、房屋、山川、桥梁.在大自然的杰作和人类的创造物中,蕴含着无数的相交线和平行线.
在同一平面内,两条直线的位置关系有相交和平行两种.若两条直线只有一个公共点,我们称这两条直线为相交线.在同一平面内,不相交的两条直线叫作平行线.如图,直线AB、CD相交于O,∠1和∠2有什么位置关系?21ABCDO34讲授新课对顶角的概念及性质一探究一:1.有公共顶点,2.两边互为反向延长线.请你观察图中∠1和∠2这组对顶角,你发现它们的大小有什么关系?21ABCDO探究二:∠1=∠2对顶角相等例1
下列各图中,∠1与∠2是对顶角的是()12C12DD12A12B
典例精析方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.例2
如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.注意:隐含条件“对顶角相等”.34
如果两个角的和等于180°(平角),就说这两个角互为补角(简称互补).可以说∠3是∠4的补角或∠4是∠3的补角.定义:
补角和余角的概念二21
如果两个角的和等于90°(直角),就说这两个角互为余角(简称互余).可以说∠1是∠2的余角或∠2是∠1的余角.定义:∠α∠α的余角∠α的补角5°32°45°77°62°23′27°37′117°37′85°175°58°148°45°135°103°13°x°(x<90)90°x°180°x°
观察可得结论:同一个锐角的补角比它的余角大________.做一做90°图1N
2DC
O134AB图2如图1,打台球时,选择适当的方向用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图1简化成图2,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2.补角和余角的性质三小组合作交流,解决下列问题:在图2中问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?问题3:∠AOC与∠BOD有什么关系?为什么?N
2DC
O134AB图21.下列说法中,正确的有()
①对顶角相等
②相等的角是对顶角
③不是对顶角的两个角就不相等
④不相等的角不是对顶角
A.1个B.2个C.3个D.0个B当堂练习√√2.判断下列各图中∠1和∠2是否为对顶角,并说明理由?121212121212√×××××3.图中给出的各角,哪些互为补角?10o30o60o80o100o120o150o170o4.图中给出的各角,哪些互为余角?15o24o66o75o46.2o43.8o5.如图,已知∠AOB=90°,∠AOC=∠BOD,则与
∠AOC互余的角有__________________.∠BOC和∠AOD6.如图已知:直线AB与CD交于点O,∠EOD=900,回答下列问题:(1)∠AOE的余角是
;补角是
;
(2)∠AOC的余角是
;补角是
;对顶角是
;
CABDOE∠AOC∠BOE∠AOE∠BOC∠BOD7.如图,∠COD=∠EOD=90°,C、O、E在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?O∠1与∠3相等(等角的余角相等).8.若一个角的补角等于它的余角的4倍,求这个角的度数.解:设这个角是x°,则它的补角是(180°-x°),余角是(90°-x°).根据题意,得180°-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五上肢筋膜六上肢局部结构一肩肌二臂肌三前臂肌四手
- 一休息指一段时间内相对减少活动使人生理和心理上得到松弛清除
- 《呼吸系统的用药》课件
- 危重困难病人护理笔记
- 《入库业务》课件
- 学校管理员工培训
- 数学学案:课堂导学反证法
- 公共部门绩效管理案例分析
- 《送电线路施工测量》课件
- 产科大出血的容量管理
- 医疗卫生机构反恐
- 2024年广东普通专升本《公共英语》完整版真题
- 数据中心储能白皮书
- 化学实验室安全智慧树知到期末考试答案2024年
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 浅谈美食类自媒体《日食记》的商业价值和运营策略
- 室内设计大学生职业生涯规划模板
- 客户服务方面的SWOT分析
- 电工职业生涯展示
- 经典房地产营销策划培训(全)
- 儿童视力保护培训课件
评论
0/150
提交评论