版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省潮州市华美中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等于(
)A. B. C. D.参考答案:B考点:两角和的正弦公式2.已知一元二次不等式的解集为,则的解集为(
)
参考答案:D略3.同时具有以下性质:“①最小正周期是π;②图象关于直线x=对称;③在[-]上是增函数”的一个函数是
()
A.y=sin()
B.y=cos()
C.y=sin()D.
y=cos()参考答案:C略4.用秦九韶算法计算函数当时的函数值时.的值为(
)A.3
B.-7
C.34
D.-57参考答案:C略5.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,若将f(x)图象上所有点的横坐标缩短来原来的倍(纵坐标不变),得到函数g(x)的图象,则g(x)的解析式为()A.y=sin(4x+) B.y=sin(4x+) C.y=sin(x+) D.y=sin(x+)参考答案:A【考点】正弦函数的图象.【分析】首先根据函数的图象确定确定A,ω,?的值,进一步利用函数图象的平移变换求出结果.【解答】解:根据函数的图象:A=1,则:T=π利用解得:?=k(k∈Z)由于|?|<所以:?=求得:f(x)=将f(x)图象上所有点的横坐标缩短来原来的倍(纵标不变)g(x)=故选:A6.图中曲线是幂函数在第一象限的图象,已知取、四个值,则相应于曲线的值依次为
(
)(A)2,-2,(B)2,,-2,
(C)2,-2,
(D)2,,-2,参考答案:B7.已知f(x)是偶函数,x∈R,当x>0时,f(x)为增函数,若x1<0,x2>0,且|x1|<|x2|,则()A.f(﹣x1)>f(﹣x2) B.f(﹣x1)<f(﹣x2) C.﹣f(x1)>f(﹣x2) D.﹣f(x1)<f(﹣x2)参考答案:B【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:∵f(x)是偶函数,x∈R,当x>0时,f(x)为增函数,且|x1|<|x2|,∴f(|x1|)<f(|x2|),则f(﹣x1)<f(﹣x2)成立,故选:B【点评】本题主要考查函数值的大小比较,根据函数奇偶性和单调性的性质是解决本题的关键.8.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:A.281盏 B.9盏 C.6盏 D.3盏参考答案:D【分析】设塔的顶层共有盏灯,得到数列的公比为2的等比数列,利用等比数列的前n项公式,即可求解.【详解】设塔的顶层共有盏灯,则数列的公比为2的等比数列,所以,解得,即塔的顶层共有3盏灯,故选D.【点睛】本题主要考查了等比数列的通项公式与求和公式的应用,着重考查了推理与计算能力,属于基础题.9.已知是一次函数,且,则解析式为(
)A.
B.
C.
D.参考答案:C略10.已知函数,若有四个不同的正数满足(为常数),且,,则的值为(
)
A.10
B.12
C.20
D.12或20参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)是定义在R上的奇函数,若时,,则f(-2)=__________.参考答案:-312.在下列结论中:①函数(k∈Z)为奇函数;②函数对称;③函数;④若其中正确结论的序号为
(把所有正确结论的序号都填上).参考答案:①③④13.已知函数满足,若函数与图像的交点为,,,,,则
.参考答案:4函数f(x)(x∈R)满足,∴f(x)的图象关于点(0,1)对称,而函数的图象也关于点(0,1)对称,∴函数与图像的交点也关于点(0,1)对称,∴,∴
14.若则
.参考答案:115.在△ABC中,∠C=60°,a,b,c分别为∠A、∠B、∠C的对边,则______参考答案:1
16.函数的定义域是______;值域是______.参考答案:
解析:;17.函数f(x)=是偶函数,且定义域为[a﹣1,2a],则a+b=.参考答案:0【考点】函数奇偶性的判断;函数的定义域及其求法.
【专题】函数的性质及应用.【分析】根据偶函数的定义,以及偶函数的定义域关于原点对称可得,解此方程组求得a和b,即可求得a+b的值.【解答】解:∵函数f(x)=是偶函数,且定义域为[a﹣1,2a],由偶函数的定义域关于原点对称可得(a﹣1)+2a=0,解得a=,故函数f(x)=x2+(b+)x+3.由题意可得,f(﹣x)=f(x)恒成立,即(﹣x)2+(b+)(﹣x)+3=x2+(b+)x+3对任意的实数x都成立,故有b+=0,解得b=﹣,故有a+b=0,故答案为0.【点评】本题主要考查函数的奇偶性,奇、偶函数的定义域的特征,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本大题满分8分)在社会实践中,小明观察一棵桃树。他在点A处发现桃树顶端点C的仰角大小为,往正前方走4米后,在点B处发现桃树顶端点C的仰角大小为.(1)求BC的长;(2)若小明身高为1.70米,求这棵桃树顶端点C离地面的高度(精确到0.01米,其中).参考答案:解:(I)在中,
则
由正弦定理得到,,
将AB=4代入上式,得到
(米)
(II)在中,,,所以
因为,
得到,
则,
所以
(米)
答:BC的长为米;桃树顶端点C离地面的高度为7.16米。19.已知函数是定义在R上的偶函数,且当时有
(1)判断函数在上的单调性,并用定义证明;
(2)求函数的解析式(写成分段函数的形式).参考答案:(1)证明:设,则=
--------------3分
又,所以,,所以
则,即,故函数在上单调递增.
----------6分(2)解:∵当时有
而当时,∴即()
∴
-----------12分
略20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.参考答案:【考点】程序框图;古典概型及其概率计算公式;几何概型.【分析】(1)根据分层抽样可得,故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.21.如图1,在Rt△ABC中,∠ABC=60°,AD是斜边BC上的高,沿AD将△ABC折成60°的二面角B﹣AD﹣C,如图2.(1)证明:平面ABD⊥平面BCD;(2)在图2中,设E为BC的中点,求异面直线AE与BD所成的角.参考答案:【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(1)推导出AD⊥CD,AD⊥BD,从而AD⊥平面BCD,由此能证明平面ABD⊥平面BCD.(2)取CD的中点F,连结EF,由EF∥BD,∠AEF是异面直线AE与BD所成角,由此能求出异面直线AE与BD所成的角.【解答】证明:(1)∵折起前AD是BC边上的高,∴当折起后,AD⊥CD,AD⊥BD,又CD∩BD=D,∴AD⊥平面BCD,∵AD?平面ABD,∴平面ABD⊥平面BCD.解:(2)取CD的中点F,连结EF,由EF∥BD,∴∠AEF是异面直线AE与BD所成角,连结AF、DE,设BD=2,则EF=1,AD=2,CD=6,DF=3,在Rt△ADF中,AF==,在△BCD中,由题设知∠BDC=60°,则BC2=BD2+CD2﹣2BD?CD?cos60°=28,∴BC=2,∴BE=,∴cos,在△B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第七章 面谈课件
- 2024智能化管理软件购销协议模板
- 2024年建筑防水工程协议模板
- 2024个人技术协作协议精简模板
- 保育员专属2024年度劳动协议书
- 2024年探矿权联合开发合作协议
- 2024物流公司司机承运协议模板
- 2024年型灯具销售协议范本
- 大米买卖2024年度协议模板
- 2024年工程物流服务购销协议模板
- 学科教研基地汇报材料
- 剪刀式升降车的安全管理试题及答案
- 神经性头痛的护理查房
- 锂电池应急预案
- 高考说题英语说题比赛课件
- 个人借款开结清证明范本
- 第二章生活计划与理财 第三节家庭理财技巧 课件 云教版劳动与技术课
- 《医学:心理疾病的预防与治疗》
- 2024届高考语文复习:诗歌鉴赏寄江州白司马
- 退化林修复投标方案
- 2023年消防安全主题班会-全民关注 生命至上 课件(共20张PPT)
评论
0/150
提交评论