人教A版高中数学二同步学习讲义:1.1空间几何体的结构特征 第1课时 含答案_第1页
人教A版高中数学二同步学习讲义:1.1空间几何体的结构特征 第1课时 含答案_第2页
人教A版高中数学二同步学习讲义:1.1空间几何体的结构特征 第1课时 含答案_第3页
人教A版高中数学二同步学习讲义:1.1空间几何体的结构特征 第1课时 含答案_第4页
人教A版高中数学二同步学习讲义:1.1空间几何体的结构特征 第1课时 含答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精第1课时棱柱、棱锥、棱台的结构特征学习目标1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征。2.理解棱柱、棱锥、棱台之间的关系。3。能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.知识点一空间几何体的定义、分类及相关概念思考观察下面两组物体,你能说出各组物体的共同点吗?答案(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.梳理(1)空间几何体的定义及分类①定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.②分类:常见的空间几何体有多面体与旋转体两类.(2)多面体与旋转体类别多面体旋转体定义由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体图形相关概念面:围成多面体的各个多边形棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线知识点二棱柱的结构特征思考观察下列多面体,有什么共同特点?答案(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都互相平行.梳理棱柱的结构特征名称定义图形及表示相关概念分类棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCDEF—A′B′C′D′E′F′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点按底面多边形的边数分:三棱柱、四棱柱、……知识点三棱锥的结构特征思考观察下列多面体,有什么共同特点?答案(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.梳理棱锥的结构特征名称定义图形及表示相关概念分类棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S—ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点按底面多边形的边数分:三棱锥、四棱锥、……知识点四棱台的结构特征思考观察下列多面体,分析其与棱锥有何区别与联系?答案(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.梳理棱台的结构特征名称定义图形及表示相关概念分类棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD—A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……知识点五棱柱、棱锥、棱台之间的关系类型一棱柱、棱锥、棱台的结构特征eq\x(命题角度1棱柱的结构特征)例1下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平行于底面的平面截成的两部分可以都是棱柱.其中正确说法的序号是________.答案③④解析①错误,底面可以不是多边形;②错误,底面可以是三角形;③正确,由棱柱的定义可知;④正确,被平行于底面的平面截成的两部分可以都是棱柱.反思与感悟关于棱柱的辨析(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)多注意观察一些实物模型和图片便于反例排除.特别提醒:求解与棱柱相关的问题时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.跟踪训练1关于棱柱,下列说法正确的是________.①有两个面平行,其余各面都是平行四边形的几何体是棱柱;②棱柱的侧棱长相等,侧面都是平行四边形;③各侧面都是正方形的四棱柱一定是正方体.答案②解析①不正确,反例如图所示.②正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.③不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.eq\x(命题角度2棱锥、棱台的结构特征)例2(1)判断如图所示的物体是不是棱锥,为什么?解该物体不是棱锥.因为棱锥的定义中要求:各侧面有一个公共顶点,但侧面ABC与侧面CDE没有公共顶点,所以该物体不是棱锥.(2)如图所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是棱台的标准有两个:一是共点,二是平行.即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,图(1)中多面体侧棱延长线不相交于同一点,故不是棱台;图(2)中多面体不是由棱锥截得的,不是棱台;图(3)中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.反思与感悟棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点跟踪训练2有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个答案A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A。类型二多面体的识别和判断例3如图,已知长方体ABCD-A1B1C1D1.用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.解截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.引申探究用一个平面去截本例中的四棱柱,能截出三棱锥吗?解如图.几何体B-A1B1C1就是三棱锥.反思与感悟解答此类题目的关键是正确掌握棱柱的几何特征,在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置.跟踪训练3如图所示,关于该几何体的正确说法有________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.答案①③④⑤解析①正确,因为有六个面,属于六面体的范畴;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,若把几何体放倒就会发现是一个四棱柱;④⑤都正确,如图所示.类型三多面体的表面展开图例4(1)请画出如图所示的几何体的表面展开图;(2)如图是两个几何体的表面展开图,请问各是什么几何体?解(1)展开图如图所示.(答案不唯一)(2)根据表面展开图,可知①为五棱柱,②为三棱台.反思与感悟(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.跟踪训练4如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②答案C解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个答案D解析根据棱柱的定义进行判定知,这4个图都满足.2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱 B.四棱锥C.三棱柱 D.三棱锥答案D解析四个面都是三角形的几何体只能是三棱锥.3.三棱柱的平面展开图是()答案B解析两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱,故选B。4.下列叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③棱锥被平面截成的两部分不可能都是棱锥.A.0个B.1个C.2个D.3个答案A解析①不正确,因为不能保证各侧棱的延长线交于一点,如图(1)所示;②不正确,因为侧棱延长后不能交于一点,还原后也并非棱锥;③不正确,如图(2)所示,用一个过顶点的平面截四棱锥得到的是两个三棱锥.(1)(2)5.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.答案12解析因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为eq\f(60,5)=12(cm).1.棱柱、棱锥定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.2.棱柱、棱锥、棱台之间的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).3.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.课时作业一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行答案D解析对于A,如果是长方体,可能不止有两个面平行,故错;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错;对于C,上、下底面不一定是平行四边形,故错;对于D,据棱柱的定义知其正确,故对.故选D.2.下面多面体中有12条棱的是()A.四棱柱 B.四棱锥C.五棱锥 D.五棱柱答案A解析∵n棱柱共有3n条棱,n棱锥共有2n条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A。3.有两个面平行的多面体不可能是()A.棱柱 B.棱锥C.棱台 D.以上都错答案B解析由棱锥的结构特征可得.4.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都平行D.侧棱延长后都交于一点答案C解析根据棱台的定义:用平行于底面的平面截棱台,截面与底面之间的部分叫做棱台,∴棱台具有的性质是:上、下底面多边形相似,每个侧面都是梯形,侧棱延长后交于一点,故选项A、B、D排除,∴棱台的侧棱都不平行,故选C。5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥 B.四棱锥C.三棱柱 D.三棱台答案B解析由题图知剩余的部分是四棱锥A′-BCC′B′.6.下面图形中是正方体展开图的是()答案A解析由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.7.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2B.1∶4C.2∶1D.4∶1答案B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.8.五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20B.15C.12D.10答案D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).二、填空题9.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.答案3解析如图,分割为A1-ABC,B-A1CC1,C1-A1B1B,3个棱锥.10.一个长方体共顶点的三个面的面积分别是eq\r(2),eq\r(3),eq\r(6),则这个长方体对角线的长是________.答案eq\r(6)解析设长方体长、宽、高为x,y,z,则yz=eq\r(2),xz=eq\r(3),yx=eq\r(6),三式相乘得x2y2z2=6,即xyz=eq\r(6),解得x=eq\r(3),y=eq\r(2),z=1,所以eq\r(x2+y2+z2)=eq\r(3+2+1)=eq\r(6).11.如图,已知正三棱锥P-ABC的侧棱长为eq\r(2),底面边长为eq\r(2),Q是侧棱PA的中点,一条折线从A点出发,绕侧面一周到Q点,则这条折线长度的最小值为________.答案eq\f(3\r(2),2)解析沿着棱PA把三棱锥展开成平面图形,所求的折线长度的最小值就是线段AQ的长度,令∠PAB=θ,则θ=60°,在展开图中,AQ=eq\f(3\r(2),2),故答案为eq\f(3\r(2),2).三、解答题12.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).13.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论