2022北京初三一模数学汇编:选择压轴(含答案)_第1页
2022北京初三一模数学汇编:选择压轴(含答案)_第2页
2022北京初三一模数学汇编:选择压轴(含答案)_第3页
2022北京初三一模数学汇编:选择压轴(含答案)_第4页
2022北京初三一模数学汇编:选择压轴(含答案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/12022北京初三一模数学汇编选择压轴一、单选题1.(2022·北京东城·一模)将一圆柱形小水杯固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度与注水时间的函数图象大致是(

)A.B.C.D.2.(2022·北京石景山·一模)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:…﹣1013……0﹣1.5﹣20…根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x−1)2−2的形式②二次函数y=ax2+bx+c的图象开口向下③关于x的一元二次方程ax2+bx+c=−1.5的两个根为0或2④若y>0,则x>3其中所有正确的结论为(

)A.①④ B.②③ C.②④ D.①③3.(2022·北京大兴·一模)某市煤气公司要在地下修建一个容积为立方米的圆柱形煤气储存室,记储存室的底面半径为r米,高为h米,底面积为S平方米,当h,r在一定范围内变化时,S随h,r的变化而变化,则S与h,S与r满足的函数关系分别是(

)A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系4.(2022·北京丰台·一模)如图,长方体的体积是100m3,底面一边长为2m.记底面另一边长为xm,底面的周长为lm,长方体的高为hm.当x在一定范围内变化时,l和h都随x的变化而变化,则l与x,h与x满足的函数关系分别是()A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.反比例函数关系,一次函数关系D.一次函数关系,反比例函数关系5.(2022·北京市燕山教研中心一模)线段.动点以每秒1个单位长度的速度从点出发,沿线段运动至点B,以线段为边作正方形,线段长为半径作圆.设点的运动时间为t,正方形周长为y,的面积为S,则y与t,S与t满足的函数关系分别是(

)A.正比例函数关系,一次函数关系 B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系 D.反比例函数关系,二次函数关系6.(2022·北京平谷·一模)研究发现,近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为()A.300度 B.500度 C.250度 D.200度7.(2022·北京门头沟·一模)如图,用一段长为18米的篱笆围成一个一边靠墙(墙长不限)的矩形花园,设该矩形花园的一边长为,另一边的长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,那么与.与满足的函数关系分别是(

)A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系8.(2022·北京朝阳·一模)点在反比例函数的图象上,下列推断正确的是(

)A.若,则 B.若,则C.若,则 D.存在,使得9.(2022·北京房山·一模)某长方体木块的底面是正方形,它的高比底面边长还多50cm,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是(

)A.正比例函数关系 B.一次函数关系C.反比例函数关系 D.二次函数关系10.(2022·北京西城·一模)如图,在平面直角坐标系xOy中,点A的坐标是,点B是函数图象上的一个动点,过点B作BC⊥y轴交函数的图象于点C,点D在x轴上(D在A的左侧),且AD=BC,连接AB,CD.有如下四个结论:①四边形ABCD可能是菱形;②四边形ABCD可能是正方形;③四边形ABCD的周长是定值;④四边形ABCD的面积是定值.所有正确结论的序号是(

)A.①② B.③④ C.①③ D.①④11.(2022·北京顺义·一模)如图1,点P从△ABC的顶点B出发,沿匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是(

)A.30 B.60 C.78 D.15612.(2022·北京海淀·一模)某校举办校庆晚会,其主舞台为一圆形舞台,圆心为O.A,B是舞台边缘上两个固定位置,由线段AB及优弧围成的区域是表演区.若在A处安装一台某种型号的灯光装置,其照亮区域如图1中阴影所示.若在B处再安装一台同种型号的灯光装置,恰好可以照亮整个表演区,如图2中阴影所示.若将灯光装置改放在如图3所示的点M,N或P处,能使表演区完全照亮的方案可能是(

)①在M处放置2台该型号的灯光装置②在M,N处各放置1台该型号的灯光装置③在P处放置2台该型号的灯光装置A.①② B.①③ C.②③ D.①②③13.(2022·北京通州·一模)如图,正方形ABCD的边长是4,E是AB上一点,F是延长线上的一点,且BE=DF,四边形AEGF是矩形,设BE的长为x,AE的长为y,矩形AEGF的面积为S,则y与x,S与x满足的函数关系分别是(

)A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系

参考答案1.B【分析】根据注水开始一段时间内,当大容器中书面高度小于h时,小水杯中无水进入,此时小水杯水面的高度h为0cm;当大容器中书面高度大于h时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到;然后小水杯水面的高度一直保持在h不再发生变化,对各选项进行判断即可.【详解】解:由题意知,当大容器中书面高度小于h时,小水杯水面的高度h为0cm;当大容器中书面高度大于h时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到;然后小水杯水面的高度一直保持在h不再发生变化;故选:B.【点睛】本题考查了一次函数的应用,函数的图象.解题的关键在于理解题意,抽象出一次函数.2.D【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:由表格可得,∵该函数的图象经过(-1,0),(3,0),∴该函数图象的对称轴是直线x==1,∴该函数图象的顶点坐标是(1,-2),有最小值,开口向上,∴二次函数y=ax2+bx+c可改写为y=a(x−1)2−2的形式,故选项①正确,选项②错误;∵该函数的图象经过(0,-1.5),其关于对称轴直线x=1的对称点为(2,-1.5),∴关于x的一元二次方程ax2+bx+c=−1.5的两个根为0或2,故选项③正确;∵该函数的图象经过(-1,0),(3,0),∴若y>0,则x>3或x<-1,故选项④错误;综上,正确的结论为①③,故选:D.【点睛】本题考查的是抛物线与x轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.3.B【分析】根据已知条件求出S随h,S随r变化的函数关系式即可得到解答.【详解】解:由已知可得:S=πr2,Sh=104,∴S=,∴S与h,S与r满足的函数关系分别是反比例函数关系,二次函数关系,故选B.【点睛】本题考查函数类型的判别,根据实际问题列出函数解析式并根据解析式的特征判断函数的类型是解题关键.4.D【分析】根据底面的周长公式“底面周长=2(长+宽)”可表示出l与x的关系式,根据长方体的体积公式“长方体体积=长×宽×高”可表示出h与x,根据各自的表达式形式判断函数类型即可.【详解】解:由底面的周长公式:底面周长=2(长+宽)可得:即:l与x的关系为:一次函数关系.根据长方体的体积公式:长方体体积=长×宽×高可得:h与x的关系为:反比例函数关系.故选:D【点睛】本题考查了函数关系式的综合应用,涉及到一次函数、二次函数、反比例函数等知识,熟知函数的相关类型并且能够根据实际问题列出函数关系式是解决本题的关键.5.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可.【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C【点睛】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键.6.C【分析】先求出反比例函数解析式,然后求出当时y的值即可得到答案.【详解】解:设近视镜的度数y(度)与镜片焦距x(米)的反比例函数解析式为,∵小明佩戴的400度近视镜片的焦距为0.25米,∴,∴反比例函数解析式为,∴当时,,∴小明的近视镜度数可以调整为250度,故选C.【点睛】本题主要考查了反比例函数的实际应用,解题的关键在于能够正确求出反比例函数解析式.7.A【分析】根据题意求得与.与之间的函数关系式,然后由函数关系式可直接进行判断.【详解】解:由题意可知,花园是矩形,∴,∴,与满足一次函数关系;花园面积:,与满足二次函数关系;故选:A.【点睛】本题主要考查一次函数与二次函数的简单应用,熟练掌握一次函数和二次函数的应用题中数量关系式(矩形周长=长与宽的和的2倍;矩形面积=长与宽的积)是解决应用题的关键.8.C【分析】反比例函数的图象在一三象限,且在每个象限内,y随x到增大而减小.据此可判断.【详解】解:反比例函数的图象在一三象限,且在每个象限内,y随x到增大而减小,那么:A、若,且(x1,y1)、(x2,y2)在同一个象限,则,故选项错误,不符合题意;B、若,且(x1,y1)、(x2,y2)分别在三、一象限内,则,故选项错误,不符合题意;C、若,则,故选项正确,符合题意;D、若,则,即y1=y2,另外,还可根据函数的定义:对于自变量x的值,y都有唯一确定的值和它相对应,所以当时,不可能.故选项错误,不符合题意.故选:C.【点睛】此题考查了比较反比例函数值的大小,,解题的关键是数形结合,掌握函数的定义和反比例函数图象的性质.9.D【分析】设底面边长为xcm,则正方体的高为(x+50)cm,设总费用为y元,则可表示出y与x的函数关系,根据关系式即可作出选择.【详解】设底面边长为xcm,则正方体的高为(x+50)cm,设总费用为y元,由题意得:,这是关于一个二次函数.故选:D.【点睛】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.10.D【分析】根据题意可得四边形ABCD是平行四边形,设点,则,根据BC=AB,可得关于a的方程,有解,可得①正确;若四边形ABCD是正方形,则AB⊥x轴,AB⊥BC,BC=AB,可得到点B,C的坐标,从而得到AB≠BC,可得②错误;取a的不同的数值,可得③错误;根据平行四边的面积,可得平行四边的面积等于8,可得④正确,即可求解.【详解】解:如图,∵BC⊥y轴,∴BC∥AD,∵AD=BC,∴四边形ABCD是平行四边形,设点,则,①若四边形ABCD是菱形,则BC=AB,∴,∵点A的坐标是,∴,∴,解得:,该方程有解,∴四边形ABCD可能是菱形,故①正确;②若四边形ABCD是正方形,则AB⊥x轴,AB⊥BC,BC=AB,∵点A的坐标是,∴点B的横坐标为5,∵点B是函数图象上,∴点B的纵坐标为,∴∵BC⊥y轴,∴点C的纵坐标为,∵点C是函数的图象的一点,∴点C的横坐标为,∴此时,∴四边形ABCD不可能是正方形,故②错误;③若a=1时,点,则,∴AD=BC=7,,∴此时四边形ABCD的周长为,若a=2时,点,则,∴AD=BC=4,,∴此时四边形ABCD的周长为,∴四边形ABCD的周长不是定值,故③错误;∵,,∴AD=,点B到x轴的距离为a,∴四边形ABCD的面积为,∴四边形ABCD的面积是定值,故④正确;∴正确的有①④.故选:D【点睛】本题主要考查了反比例函数的图象与性质,平行四边形的性质,菱形的判定,正方形的判定,平行四边形的周长、面积公式,利用数形结合思想解答是解题的关键.11.B【分析】将点P的运动轨迹和图象结合起来,进行分析可知:AB=BC=13,所以为等腰三角形,当时,BP=12,对应图象中的点M的y值,根据三线合一可知,当时,点P为AC的中点,根据勾股定理可求CP,进而可求AC,根据三角形面积公式可得最后结果.【详解】解:由图象可知:AB=BC=13为等腰三角形当点P在C-A上运动时,对于图象中的曲线部分由于M是曲线部分的最低点此时BP最小,即BP⊥AC,BP=12由勾股定理可知:PC=5PA=PC=5(根据等腰三角形三线合一可知)AC=10故选:B【点睛】本题考查了函数图象的理解和应用以及等腰三角形的性质,数形结合是解决本题的关键.12.A【分析】根据圆周角和三角形内角和的性质,对各个选项逐个分析,即可得到答案.【详解】在M处放置2台该型号的灯光装置,如下图∵在A、B两处安装各一台某种型号的灯光装置,恰好可以照亮整个表演区,∴优弧所对圆周角如要照亮整个表演区,则两台灯光照亮角度为,且∴为优弧所对圆周角∴,即①方案成立;在M,N处各放置1台该型号的灯光装置,分别连接、、、、、,如下图,∵,∴②方案成立;在P处放置2台该型号的灯光装置,如下图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论