版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【考研数学】143分牛人的重点及难点归纳辅导笔记([PubMed]143
pointsofthefocusanddifficultiesofcattleinduction
coachingnotes)
Mathematicsemphasisanddifficultyinductionguidance
Partone
Chapter1setsandmappings
Section1.sets
Section2.mappingandfunction
Theteachingrequirementofthischapteristounderstandthe
conceptofsetandtheconceptofmapping,tograspthe
representationofrealnumberset,therepresentationand
functionoffunction
Somebasicpropertiesof.
Thecontinuityoftherealnumbersystem,1.
Section2.ofsequencelimit
Section3.infinity
Section4.convergencecriteria
Theteachingrequirementsofthischapter:grasptheconcept
anddefinitionofthelimitofsequence,graspandapplythe
convergencecriterionofseries,andunderstandtherealnumber
system
Themeaningofcontinuity,andaseriesoffundamentaltheorems
forrealnumbersystems.
Thethirdchapter,functionlimitandcontinuousfunction
Section1.functionlimit
Section2.continuousfunction
Section3.infinitesimalandinfinity
Section4.continuousfunctiononaclosedinterval
Theteachingrequirementofthischapteristograsptheconcept
offunctionlimit,therelationbetweenthelimitoffunction
andthelimitofsequence,theorderofinfinitesimaland
infinity
Thebasicpropertiesofcontinuousfunctionsonclosed
intervalsareestimated.
Thefourthchapterisdifferentiation
Section1.differentialandderivative
Themeaningandnatureofsection2.ofthederivative
Section3.derivativefouroperationsandinversefunction
derivationrule
Spoundfunctionderivationruleandits
application
Section5.highorderderivativeandhighorderdifferential
Theteachingrequirementsofthischapteraretounderstandthe
conceptsofdifferentialandderivative,higherorder
differentialandhigherorderderivatives,theirproperties
andtheirrelations,andmasterthem
Derivativeanddifferentialmethods.
Thefifthchapteristhedifferentialmeanvaluetheoremand
itsapplication
Section1.differentialmeanvaluetheorem
The2.L,Hospitallaw
Section3.polynomialinterpolationandTaylorformula
TheformulaofTaylorfunctionanditsapplicationinsection
4.
Forexample,5.application
Theapproximatesolutionof6.functionequation
Thischapterteachingrequirements:graspthedifferential
meantheoremandfunctionoftheTaylorformula,andapplied
tothefunctionofthenatureoftheresearch,skilled
transportation
ThelimitiscalculatedbyusingtheL,Hospitalrule,andthe
extremumproblemandthefunctionmappingproblemaresolved
byapplyingdifferentiationtosolvingthefunction.
Thesixthchapterisindefiniteintegral
Section1.indefiniteintegralconceptsandoperationalrules
Section2.elementintegralmethodandintegralmethod
Theindefiniteintegralofrationalfunctionandits
applicationinsection3.
Theteachingrequirementsofthischapter:grasptheconcepts
andalgorithmsofindefiniteintegral,andapplythe
substitutionmethodandtheintegralmethodskillfullytosolve
indefiniteintegral,
Graspthemethodoffindingindefiniteintegralofrational
functionandpartialirrationalfunction.
Theseventhchapterintegral(Section1,section3)
Section1.theconceptofdefiniteintegralandIntegrability
Conditions
Thebasicpropertiesofsection2.ofthedefiniteintegral
Thefundamentaltheoremofcalculus3..
Theseventhchapterintegral(Section4,section6)
Aegralingeometry
Section5.applicationexamplesofcalculus
Numericalcalculationofsection6.ofthedefiniteintegral
Thischapterteaching:understandingtheconceptofdefinite
integral,firmlygraspthefundamentaltheoremofcalculus:
NewtonLeibnizformula,skilledset
Integralcalculation,skilleduseofinfinitesimalmethodto
solvegeometry,physicsandpracticalapplicationofthe
problem,theinitialgraspofdefiniteintegralnumerical
Count.
Theeighthchapterisimproperintegral
Theconceptandcalculationsection1.abnormalintegral
Convergencecriteriaofsection2.abnormalintegral
Theteachingrequirementsofthischapter:grasptheconcept
ofimproperintegral,mastertheconvergencejudgmentmethod
ofabnormalintegralandthecalculationofabnormalintegral
Count.
Theninthchapter,numberseries
Theconvergenceofthe1.numberseries
Section2.superiorlimitandlower1imit
Section3.positiveseries
Section4.arbitrarytermprogression
Section5.infiniteproduct
Theteachingrequirementsofthischapter:grasptheconcept
ofconvergenceanddivergenceofseveralseries,understandthe
conceptsofsequence,upperlimitandlowerlimit,and
skillfullyuseallkindsof
Thecriterionisusedtodistinguishthepositiveseries,the
convergenceanddivergenceofanyseriesandinfiniteproduct.
Thetenthchapteristheseriesoffunctionterms
Theuniformconvergenceoffunctionseriesofsection1.
Section2.andrecognizingthepropertiesofuniform
convergenceofaseries
Section3.powerseries
Section4.powerseriesexpansionofafunction
Section5.polynomialapproximationofcontinuousfunctions
Theteachingrequirementsofthischapterare:tograspthe
conceptofuniformconvergenceoffunctionseries(function
sequence),andtojudgetheconsistencyofconvergence
Thepropertiesofuniformconvergentseriesandtheproperties
ofpowerseriescanbeskillfullyexpandedaspowerseries,and
thepowerseriesexpansionoffunctionsisunderstood
Importantapplications.
TheeleventhchapteristhelimitandcontinuityinEuclid
spaces
Thebasictheoremon1.Euclidspace.
Section2.multivariatecontinuousfunction
Spertiesofcontinuousfunction
Theteachingrequirementsofthischapter:understandthe
topologicalpropertiesofEuclidspace,grasptheconceptof
the1imitandcontinuityofmultivariatefunction,distinguish
it
Thedifferencebetweentheconceptofafunctionandtheunary
function,andthepropertiesofthecontinuousfunctionon
compactset.
Thetwelfthchapterstudiesthemultivariatefunction
differential(1-5)
Section1.partialderivativeanddifferential
Section2.derivationruleofcompoundfunction
The3.Taylorformula
Section4.implicitfunction
Applicationof5.partialderivativesingeometry
Thetwelfthchapterstudiesthemultivariatefunction
differential(6-7)
Section6.unconditionalextremum
Section7.conditionalextremumproblemandLagrange
multipliermethod
Theteachingrequirementsofthischapteraretograspthe
conceptsofpartialderivativesanddifferentialfunctionsof
multivariatefunctionsanddistinguishtheregionsbetween
themandthecorrespondingconceptsofunaryfunctions
Donotgraspthederivationofmultivariatefunctionsand
implicitfunctions,grasptheapplicationofpartial
derivativesingeometry,andgraspthefunctionofmultivariate
functions
Themethodofconditionalextremumandconditionalextremum.
Thethirteenthchapteristhemultipleintegral
Section1.boundedclosedregiononthetripleintegral
Spertiesandcalculationofdoubleintegral
Segralvariablesubstitution
Section4.abnormalintegral
Section5.differentialform
Theteachingrequirementofthischapteristounderstandthe
conceptofmultipleintegral,masterthemethodsofcalculating
themultipleintegralandtheabnormalmultipleintegral,and
applythevariablegenerationskillfully
Changethemethodtocalculatethemultipleintegral,and
understandtheintroductionofdifferentialformintheformula
ofthevariablesubstitutionofthemultipleintegral.
Thefourteenthchapteriscurvilinearintegralandsurface
integral
Section1.firstclasslineintegralsandsurfaceintegralsof
thefirsttype
Section2.ofsecondkindofcurvilinearintegralandsurface
integralsofthesecondtype
The3.Greenformula,GaussformulaandStokesformula
Section4.differentialdifferentialform
Section5.preliminaryfieldtheory
Theteachingrequirementsofthischapter:graspthetwokinds
ofcurveintegralandtwokindsofsurfaceintegralconceptand
calculationmethod,mastertheGreenformula,Gauss
ThemeaningandapplicationofformulaandStokesformula,and
theintroductionofexteriordifferential,wegiveGreen
formula,GaussformulaandStokes
Themeaningoftheformulainunifiedform,andapreliminary
understandingofthetheoryoffieldknowledge.
Thefifteenthchapteristheintegralofparametricvariables
Section1.containsthecommonmeaningintegralvariable
Improperintegralwithvariablesection2.
The3.Eulerintegral
Theteachingrequirementofthischapteristomasterthe
propertyandcalculationoftheintegraloftheconstantofthe
parametricvariable,andtograsptheuniformconvergenceof
theimproperintegraloftheparametricvariable
Theconceptofuniformlyconvergentdiscrimination,the
propertiesofuniformlyconvergentimproperintegralandits
applicationinintegralcomputation,masteringEuler
Calculationofintegral.
Thesixteenthchapter,Fourierseries
Section1.Fourierseriesexpansionofafunction
Convergencecriteriaofsection2.oftheFourierseries
SpertiesofFourierseries
4.FourierandFourierintegraltransform
Section5.fastFouriertransform
TheteachingrequirementofthischapteristograsptheFourier
seriesexpansionmethodofperiodicfunctionandmasterthe
convergencejudgmentmethodofFourierseries
ThepropertiesofFourierserieshaveapreliminary
understandingoftheFouriertransformandtheFourier
integral.
testquestions
First,answerthefollowingquestions
1,
LimitLim,Tan,Tan
Sin,In()
X
X
ToX
9
2?
Two
One
2,
(ex1)3Exdx.+formula
3,
Limitlim.
X
XX
Xxx
++
+++
100101
010010001
Two
32
4,
YxTDT,fory.x=formula'3
Zero
2sin2
5,
setup
FXbeg,amongthem
Xxx
Xxx
0=f(a)f(a)a
+=?
>?
???
??
++?
Two
Two
11
21
110
6,
Seekthelimit
Lim
XLN
X
ToX
9
One
21
7,lety=(3x+1)In(3x+1),y
8,
Seekdx.
X
Xformula?
21
02
Three
One
9,setY,x,x,e,x,dy.
X()=?
32
One
10,
Theimplicitfunctiondeterminedbytheconstantofthe
equation
Differential
Xyaa
YYxdy
Two
Three
Two
Three
Two
+=3>0
0
0
H,
SetbyandbyOK
Trytofind
Y,y,x,x,s,y,s
Dy
DX
=0=(1+2)1=(1),
221
Two
12,setY,y,x,determinedbyequationye,y
Xy
==,X,
+
0,
13,ifx>0,provex+,1+,x>2x,2In()2
14,
ForFormula1
Sixteen
14xx
DX
15,
Forthemainpurpose.?
Two
1x4x2
DX
16,
(1)(1)
D
Formula2+X+X
X
Two.Answerthefollowingquestions
1,todoaconefunnel,itsbuslength20cm,tomakeitthe
largestvolume,askhowhighitshouldbe?
2,thecurvey=2,x2andy=xsurroundedbytheplanefigure
ofthearea
3,thecurvey=x2andy=x3onthesurfaceofthe[0,1]
surroundedbytheareaoftheplane
Three.Answerthefollowingquestions
Itisprovedthattheequationx5,7x=4,hasatleastone
realrootintheinterval(1,2)
Four.Answerthefollowingquestions
Determinetheconcavityandconvexityofthecurvey=(x+3)
xon[0++)
Secondpart
(1)CourseName:differentialgeometry
(2)basiccontent:theclassicaltheoryofcurvesandsurfaces
inthree-dimensionalspace.Themaincontentsare:
Thecurvetheory,including:thetangentvectorandthearc
lengthofcurve;andfromtheprincipalnormalvectormethod
vector;curvatureandtorsion;Frenet
TheframeandtheFrenetformula,thelocalstructureofthe
curve,thebasictheoremofthecurvetheory,andsomeintegral
propertiesoftheplanecurve,
Suchastangentrotationindextheorem,geometricpropertyof
convexcurve,IsoperimetricInequality,fourvertextheorem
and
Cauchy-Croftonformula.Someglobalpropertiesofspacecurves,
suchastheCroftonformulaofsphericalsurface,Fenchel
Fary-Milnorandtheorem.
Thelocaltheoryofsurfacesincludes:representationof
surfaces,tangentvectors,normalvectors,rotationsurfaces,
ruledsurfaces,andsurfaces
Developthesurface;thefirstfundamentalformandthe
intrinsicquantityofthesurface;thesecondfundamentalform
ofthesurface;theactiveframeonthesurface
Thebasicformula;asymptoteandWeingartentransformandthe
conjugatecurvedline;curvature;principalcurvatureand
principaldirection,.
Gausscurvatureandmeancurvature;thelocalstructureofthe
surface;theGaussmappingandthethirdfundamentalform;the
wholeumbilicalcurve
Surface,minimalsurfaceandconstantGausscurvaturesurface;
thebasictheoremofsurfacetheory;geodesiccurvatureand
geodesic;vector
Parallelmovement.
Basicrequirements:throughthestudyofthiscourse,students
shouldmastersomebasicgeometricconceptsandresearchin
curvetheoryandsurfacetheory
Somecommonmethodsoffractalgeometry.Inordertofurther
studyandstudymoderngeometrytolaythefoundation;onthe
otherhand,culture
Abilitytocombinetheorywithpracticeandanalyzeproblems
andsolveproblems.
Two,teachingoutline
Chapter1curvetheoryofthree-dimensionalEuclideanspace
Section1arctangentvectorcurvelength
Teachingrequirements:understandthebasicconceptsofcurves,
findthetangentvectorandarclengthofcurves,andusearc
lengthparameterstorepresentthecurve
Line。
Section2mainvectorandnormalvectorfromthecurvatureand
torsion
Teachingrequirements:understandingthecurvatureandtorsion
andnormalvectorandnormalvector,fromcloseplaneandthe
tangentplanefromthebasicconcept
Accounting,curvature,andtorsion.
Section3FrenetframeFrenetformula
Teachingrequirements:MasterFrenetformula,canuseFrenet
formulatosolvepracticalproblems.
Section4inaneighboringpropertycurve
Teachingrequirements:expressingthelocalcanonicalformof
acurveinafield,andunderstandingthesetsenseofthe
interferencesign.
Thebasictheoremofsection5curvetheory
Teachingrequirements:graspthebasictheoremofcurvetheory,
andcanfindsomesimplecurvesofknowncurvatureand
disturbance.
Someofthenatureofthewholesection6planecurve
6.1someconceptsaboutclosedcurves
6.2rotationindextheoremoftangents
6.3convexcurve*
6.4IsoperimetricInequality*
6.5,fourvertextheorem*
6.6Cauchy-Croftonformula*
Teachingrequirements:understandsomebasicconceptsofplane
curve:closedcurve,simplecurve,tangentimage,relative
wholecurve
Rotationindexandconvexcurve.Mastersomegeneralproperties
ofplanecurve:simpleclosedcurvecut
Theindextheoremofrotation,thegeometricpropertyofconvex
curve,IsoperimetricInequality,fourvertextheoremand
Cauchy-Croftonformula.
Thenatureofthewholesection7spacecurve
Croftonformulaof7.1sphere*
7.2Fencheltheorem*
7.3Fary-MiInortheorem*
Teachingrequirements:understandingtheconceptoftotal
curvature.Graspsomeoftheglobalpropertiesofthespace
curve:theCroftonofthesphere
Formula,FencheltheoremandFary-MiInortheorem.
Thesecondchapteristhelocalgeometryofthecurvedsurface
in3DEuclideanspace
Said1surfacetangentvectorvectormethod
1.1definitionofsurface
Tangentplaneof1.2tangentvectors
1.3normalvector
1.4parametricrepresentationofsurfaces
1.5cases
1.6,parametricsurfacefamily,planefamily,enveloping
surface,developablesurface
Teachingrequirements:graspthreelocalanalytic
representationsofthesurface,findthetangentplaneand
normalofthesurface,andunderstandtherotationalsurface
Andruledsurface;graspthefeatureofdevelopablesurface.
First,secondbasicforms,2surface
2.1thefirstfundamentalformofasurface
Orthogonalparametriccurvenetworkof2.2surfaces
Intrinsicgeometryof2.3equidistantcorrespondingsurfaces
2.4conformalcorrespondence
2.5thesecondfundamentalformofasurface
Teachingrequirements:graspthefirstbasicformofthe
surfaceandrelatedquantities-thearclengthofthecurve
onthesurfaceandthecurveofthetwointersection
Thecalculationofintersectionangleandarea,andunderstand
itsgeometricmeaning;understandingisometryandconformal
mapping;master
Secondbasicform.
Thebasicformulaofsection3onthesurfaceoftheframe
surface
3.1theConventionofomittingandtypingmarks
Thebasicformulaofthemovableframesurfaceon3.2surfaces
3.3WeingartentransformW
Conjugatedirectionasymptoteasymptoticdirectionof3.4
surfaces
Teachingrequirements:graspthebasicformulaofthemovable
frameandsurfaceonthesurface,andcanfindtheconnection
systemoftheorthogonalparametriccurvenet
Number;understandtheWeingartentransformandconjugate
directionsandasymptoticdirections,andfindsomesimple
curves
Asymptoticcurve.
Section4surfacecurvature
Thenormalcurvatureofacurveona4.1surface
4.2principalprincipalcurvatures
4.3Dupinreticle
4.4curvature
4.5principalcurvatureandcurvaturelinecalculation,total
curvature,meancurvature
4.6curvaturenetwork
Theshapeof4.7surfacesadjacenttoonepoint
The4.8Gaussmappingandthethreefundamentalform
4.9thetotalcurvatureandmeancurvaturesatisfysome
propertiesofthesurface
Teachingrequirements:understanding,curvature,principal
directionandprincipalcurvature,curvatureline,total
curvatureandmeancurvature,conceptsandgeometricmeanings
Yi,andwillcalculatethem;grasptheGaussmappingandthe
threebasicform;beabletotunethewholenavel
Surfacesareclassifiedwiththetotalcurvatureofthesurface
aszero.Graspthegeometricmeaningoftheminimalsurfaceand
askforsomesimplicity
Singleminimalsurface.
Thebasictheoremofthebasicequationsandthe5surfaceon
thesurface
5.1basicequationsofsurface
5.2fundamentaltheoremofsurfacetheory
Teachingrequirements:masteringandunderstandingthebasic
equationsofsurfaceandthebasictheoremofsurfacetheory.
Section6geodesicgeodesiccurvature
6.1geodesiccurvaturevectorgeodesiccurvature
6.2Liouvilleformulaforgeodesiccurvature
6.3geodesic
Geodesiccoordinatesystemofgeodesiccoordinatesystemin6.4
coordinatesystem
6.5applications
6.6grounddisturbancerate
6.7Gauss-Bonnetformula
Teachingrequirements:understandingandmasteringthe
geodesiccurvatureandgeodesic,grounddisturbance,normal
coordinatesystem,geodesiccoordinatesystemandmeasurement
Thedefinitionandgeometricmeaningoftheearthcoordinate
system.Thegeodesiccurvatureandgeodesiccanbecalculated
byusingtheLiouvilleformula
Line;canusethepolarcoordinatesystemtostudythecurved
surfacewhosetotalcurvatureisconstant;understand(part)
Gauss-Bonnetformula.
Parallelmotionvectoronthesurfaceofthesection7
7.1vectorsmovingalongasurfaceofacurve;absolutemotion;
absolutedifferentiation
7.2thenatureofabsolutedifferential
7.3selfparallelcurve
Seven
?
?
???
?
???
?
?
?
???
9
9
???
9
9
Arightsideis2
123
12242
62,R,h,h,H
HH??
???
?
++?
SoTisin(1,2,-)
1)theFderivativeatthatpointisthtransformationof
123,h,h,andhto(62,242),12123,h,h,H+H+H.
[Note1:thisanswermaintainsthewaytheoriginalquestion
isrepresentedbythelinevector..
[Note2:whenT:R3=R2means23
Two
Two
2,
32R
Z
Y
X
YXZR
Xy
Z
Y
T
??
?
?
??
?
9
A???
9
???
+
二?
???
?
??
9
9
CanwegetTin?
?
?
?
??
?
?
Z
Y
X
TheF-derivativeat..:
???
?
???
??
=?
?
?
9
??
9
?
??
?
9
??
9
?
ZYX
X
z
Y
X
T
222
620
Thatis,3
Three
Two
One
Three
Two
One
Three
Two
1,
222
620
R
Hhh
Hhh
ZYx
X
Hhh
Z
Y
X
T
??
9
9
??
9
?
?
??
9
?
??
9
?
???
?
???
??
??
?
?
??
?
9
??
9
?
??
?
9
??
?
9
??
?
?
So二
??
?
?
??
?
?
??
?
?
??
9
9
??
?
?
??
9
?
?
Three
Two
One
One
Two
One
H
HH
T3
Three
Two
One
123
21422,
62R
Hhh
Hhh
HandH
??
?
?
??
9
?
???
????
++?
9
Or?
??
?
???
?
?
?
二?
9
9
?
??
?
?
??
?
?
???
?
?
242
620
One
Two
One
T,theactionofanoperatoronavectorisrepresentedbya
vectoroftheleftmultiplicationofthevectorinthe
correspondingmatrix..
Thirdpart
1.basictheoremofHigherAlgebra
LetKbeanumberfield.TheunityofapolynomialinXwhose
coefficientsarerepresentedbyK[x]onK.If
(...)(0)0
One
01fxx=a+A+X+a=K?Xa=n
NncallsnthenumberofF(x),andisdenotedasDEGF(x).
Theorem(thebasictheoremofhigheralgebra)anyelementof
C[x]musthavezeroinC.
Propositionset()(01)0
One
01fxx=a+A+A+X?A=n=n
N,N,isanpolynomialonC,andais
Apluralnumber.Thereisanwhosefirstfactoris0a,and
the1polynomialQ(x)makesC
F(x)=q(x)(x,a)+F(a)
Mathematicalinductionofnisproved.
Corollary0xf(x)zero,ifandonlyif(0)x?Xf(x)factor
(includingDEGF(x)=1).
Proposition(equivalentpropositionofthebasictheoremof
higheralgebra)n
F(x)=a,x,N+,a,x,N,1+,+A
01
(01)a=0,n=npolynomialC,itcanbedecomposedintoa
productoffactorNcomplex,namely
N,a,a,,a12,make
()())nx=ax=xfalphaxalpha
Itisprovedthatthemathematicalinductionofnismadeby
usingthebasictheoremofHigherAlgebraandproposition1.3.
2.anotherexpressionofthebasictheoremofHigherAlgebra
ThedefinitionofKisanumberfield,andXisanunknown
quantity,thenanequation
…01
One
01++++=?
?
Nn
A,x,N,a,x,N,a,x,a()
(ofwhich,0010a,a...A...A=K=n)iscalledthenumber
fieldKanalgebraicequation;ifx=Alpha,K
Enter(1),andthenmakeitanequation,calledalpha(equation
1),arootinK.
Theorem(anotherformofthefundamentaltheoremofalgebra)
numberfieldKn(1)algebraicequationsinthecomplexdomain
C
Theremustbearootinside.
Thepropositionaln-algebraequationhasandhasexactlyn
roots(repeated)inthecomplexdomainC.
Proposition(anotherformofexpressionofthefundamental
theoremofhigheralgebra)giventwoNandMpolynomialsonC
().....(0)=01+++=n
N
N,F,x,a,a,x,a,x,a,
().....(0)=01+++=m
M
M,G,x,B,B,x,B,x,b,
IfthereisawholenumberL,1=m,1=nandL+1different
complex121,,1...L+betabetabetabeta,so
F()=g()(I,=1,2,...,L+1),I,I,beta,beta,
Thenf(x)=g(x).
1.2.2'stheoremandpropertiesofrootsofalgebraicequations
withrealcoefficients
1
01()nn
Nfx=ax+ax?+L+a,0I,0a,a=K,Letf(x)=0forcomplex
roots
12,nalpha,Lalpha(possiblyrepeated),then
12
01
One
1212
100000
0.
N
In
I
Nn
Nn
F,x,x,x,x,X
A
Xx
Alphaalphaalpha
Alpha,alpha,alpha,alpha
?
===???
=+++++
PIL
LLL
therefore
⑴()12
One
Zero
One
Na
A=alpha+alpha+L+alpha;
Sigma
<<<
=?
Iin
IIa
A
12
12
Zero
Two
Zero
2(1)alpha;
LLLLLLLL
(1)12
Zero
N
Nn
A
A=alphaalphaLalpha
Weremember
(=,)1012=nsigma,alpha,alpha,L,alpha;
N,N,sigma1,alpha1,alpha2,L,alpha=Alpha1+alpha2,
+L+alpha
LLLLLLLL
PI
Islessthanorlessthanlessthanorequalto
Ilin
R,N,I,I,I
R
R
L
LL
12
12
Zero
12sigma(alpha,alpha,alpha)alphaalpha;
LLLLLLLL
N,N,N,sigma,1,alpha,2,L,alpha,1,alpha,2L,alpha(,,,)
(12,N,sigma,L,sigma,called12,elementarysymmetric
polynomialsofN,alpha,L,alpha).Hence
Theorem2.5(theWeitheorem)sets1
01()nn
Nfx=ax+ax?+L+a,0I,0a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雇佣门卫协议书2篇
- 初中语文阅读知识课件
- 《工地营销》课件
- 公司与学校合作协议书范本
- 2024年度工程造价咨询与控制合同2篇
- 2024年市场调研与分析合同3篇
- 2024年度专利实施许可合同技术要求3篇
- 美容院承包合同范本3篇
- 《杜鹃花科Ericacea》课件
- 急性疾病的心理护理
- 2024年食品安全生产经营大比武理论考试题库-上(单选题)
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 2023年福建省考评员考试题
- 自动发电控制(AGC)介绍1
- 廉洁微型课教案(共7页)
- (完整版)机械振动和机械波知识点总结
- APQP产品设计与开发(共97页).ppt
- GMP认证药厂固体车间及中药材提取车间平面图
- 海尔售后服务承诺
- 国华太仓电厂600MW超临界直流炉控制策略
- 网络安全教育ppt课件
评论
0/150
提交评论