【考研数学】143分牛人的重点及难点归纳辅导笔记_第1页
【考研数学】143分牛人的重点及难点归纳辅导笔记_第2页
【考研数学】143分牛人的重点及难点归纳辅导笔记_第3页
【考研数学】143分牛人的重点及难点归纳辅导笔记_第4页
【考研数学】143分牛人的重点及难点归纳辅导笔记_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【考研数学】143分牛人的重点及难点归纳辅导笔记([PubMed]143

pointsofthefocusanddifficultiesofcattleinduction

coachingnotes)

Mathematicsemphasisanddifficultyinductionguidance

Partone

Chapter1setsandmappings

Section1.sets

Section2.mappingandfunction

Theteachingrequirementofthischapteristounderstandthe

conceptofsetandtheconceptofmapping,tograspthe

representationofrealnumberset,therepresentationand

functionoffunction

Somebasicpropertiesof.

Thecontinuityoftherealnumbersystem,1.

Section2.ofsequencelimit

Section3.infinity

Section4.convergencecriteria

Theteachingrequirementsofthischapter:grasptheconcept

anddefinitionofthelimitofsequence,graspandapplythe

convergencecriterionofseries,andunderstandtherealnumber

system

Themeaningofcontinuity,andaseriesoffundamentaltheorems

forrealnumbersystems.

Thethirdchapter,functionlimitandcontinuousfunction

Section1.functionlimit

Section2.continuousfunction

Section3.infinitesimalandinfinity

Section4.continuousfunctiononaclosedinterval

Theteachingrequirementofthischapteristograsptheconcept

offunctionlimit,therelationbetweenthelimitoffunction

andthelimitofsequence,theorderofinfinitesimaland

infinity

Thebasicpropertiesofcontinuousfunctionsonclosed

intervalsareestimated.

Thefourthchapterisdifferentiation

Section1.differentialandderivative

Themeaningandnatureofsection2.ofthederivative

Section3.derivativefouroperationsandinversefunction

derivationrule

Spoundfunctionderivationruleandits

application

Section5.highorderderivativeandhighorderdifferential

Theteachingrequirementsofthischapteraretounderstandthe

conceptsofdifferentialandderivative,higherorder

differentialandhigherorderderivatives,theirproperties

andtheirrelations,andmasterthem

Derivativeanddifferentialmethods.

Thefifthchapteristhedifferentialmeanvaluetheoremand

itsapplication

Section1.differentialmeanvaluetheorem

The2.L,Hospitallaw

Section3.polynomialinterpolationandTaylorformula

TheformulaofTaylorfunctionanditsapplicationinsection

4.

Forexample,5.application

Theapproximatesolutionof6.functionequation

Thischapterteachingrequirements:graspthedifferential

meantheoremandfunctionoftheTaylorformula,andapplied

tothefunctionofthenatureoftheresearch,skilled

transportation

ThelimitiscalculatedbyusingtheL,Hospitalrule,andthe

extremumproblemandthefunctionmappingproblemaresolved

byapplyingdifferentiationtosolvingthefunction.

Thesixthchapterisindefiniteintegral

Section1.indefiniteintegralconceptsandoperationalrules

Section2.elementintegralmethodandintegralmethod

Theindefiniteintegralofrationalfunctionandits

applicationinsection3.

Theteachingrequirementsofthischapter:grasptheconcepts

andalgorithmsofindefiniteintegral,andapplythe

substitutionmethodandtheintegralmethodskillfullytosolve

indefiniteintegral,

Graspthemethodoffindingindefiniteintegralofrational

functionandpartialirrationalfunction.

Theseventhchapterintegral(Section1,section3)

Section1.theconceptofdefiniteintegralandIntegrability

Conditions

Thebasicpropertiesofsection2.ofthedefiniteintegral

Thefundamentaltheoremofcalculus3..

Theseventhchapterintegral(Section4,section6)

Aegralingeometry

Section5.applicationexamplesofcalculus

Numericalcalculationofsection6.ofthedefiniteintegral

Thischapterteaching:understandingtheconceptofdefinite

integral,firmlygraspthefundamentaltheoremofcalculus:

NewtonLeibnizformula,skilledset

Integralcalculation,skilleduseofinfinitesimalmethodto

solvegeometry,physicsandpracticalapplicationofthe

problem,theinitialgraspofdefiniteintegralnumerical

Count.

Theeighthchapterisimproperintegral

Theconceptandcalculationsection1.abnormalintegral

Convergencecriteriaofsection2.abnormalintegral

Theteachingrequirementsofthischapter:grasptheconcept

ofimproperintegral,mastertheconvergencejudgmentmethod

ofabnormalintegralandthecalculationofabnormalintegral

Count.

Theninthchapter,numberseries

Theconvergenceofthe1.numberseries

Section2.superiorlimitandlower1imit

Section3.positiveseries

Section4.arbitrarytermprogression

Section5.infiniteproduct

Theteachingrequirementsofthischapter:grasptheconcept

ofconvergenceanddivergenceofseveralseries,understandthe

conceptsofsequence,upperlimitandlowerlimit,and

skillfullyuseallkindsof

Thecriterionisusedtodistinguishthepositiveseries,the

convergenceanddivergenceofanyseriesandinfiniteproduct.

Thetenthchapteristheseriesoffunctionterms

Theuniformconvergenceoffunctionseriesofsection1.

Section2.andrecognizingthepropertiesofuniform

convergenceofaseries

Section3.powerseries

Section4.powerseriesexpansionofafunction

Section5.polynomialapproximationofcontinuousfunctions

Theteachingrequirementsofthischapterare:tograspthe

conceptofuniformconvergenceoffunctionseries(function

sequence),andtojudgetheconsistencyofconvergence

Thepropertiesofuniformconvergentseriesandtheproperties

ofpowerseriescanbeskillfullyexpandedaspowerseries,and

thepowerseriesexpansionoffunctionsisunderstood

Importantapplications.

TheeleventhchapteristhelimitandcontinuityinEuclid

spaces

Thebasictheoremon1.Euclidspace.

Section2.multivariatecontinuousfunction

Spertiesofcontinuousfunction

Theteachingrequirementsofthischapter:understandthe

topologicalpropertiesofEuclidspace,grasptheconceptof

the1imitandcontinuityofmultivariatefunction,distinguish

it

Thedifferencebetweentheconceptofafunctionandtheunary

function,andthepropertiesofthecontinuousfunctionon

compactset.

Thetwelfthchapterstudiesthemultivariatefunction

differential(1-5)

Section1.partialderivativeanddifferential

Section2.derivationruleofcompoundfunction

The3.Taylorformula

Section4.implicitfunction

Applicationof5.partialderivativesingeometry

Thetwelfthchapterstudiesthemultivariatefunction

differential(6-7)

Section6.unconditionalextremum

Section7.conditionalextremumproblemandLagrange

multipliermethod

Theteachingrequirementsofthischapteraretograspthe

conceptsofpartialderivativesanddifferentialfunctionsof

multivariatefunctionsanddistinguishtheregionsbetween

themandthecorrespondingconceptsofunaryfunctions

Donotgraspthederivationofmultivariatefunctionsand

implicitfunctions,grasptheapplicationofpartial

derivativesingeometry,andgraspthefunctionofmultivariate

functions

Themethodofconditionalextremumandconditionalextremum.

Thethirteenthchapteristhemultipleintegral

Section1.boundedclosedregiononthetripleintegral

Spertiesandcalculationofdoubleintegral

Segralvariablesubstitution

Section4.abnormalintegral

Section5.differentialform

Theteachingrequirementofthischapteristounderstandthe

conceptofmultipleintegral,masterthemethodsofcalculating

themultipleintegralandtheabnormalmultipleintegral,and

applythevariablegenerationskillfully

Changethemethodtocalculatethemultipleintegral,and

understandtheintroductionofdifferentialformintheformula

ofthevariablesubstitutionofthemultipleintegral.

Thefourteenthchapteriscurvilinearintegralandsurface

integral

Section1.firstclasslineintegralsandsurfaceintegralsof

thefirsttype

Section2.ofsecondkindofcurvilinearintegralandsurface

integralsofthesecondtype

The3.Greenformula,GaussformulaandStokesformula

Section4.differentialdifferentialform

Section5.preliminaryfieldtheory

Theteachingrequirementsofthischapter:graspthetwokinds

ofcurveintegralandtwokindsofsurfaceintegralconceptand

calculationmethod,mastertheGreenformula,Gauss

ThemeaningandapplicationofformulaandStokesformula,and

theintroductionofexteriordifferential,wegiveGreen

formula,GaussformulaandStokes

Themeaningoftheformulainunifiedform,andapreliminary

understandingofthetheoryoffieldknowledge.

Thefifteenthchapteristheintegralofparametricvariables

Section1.containsthecommonmeaningintegralvariable

Improperintegralwithvariablesection2.

The3.Eulerintegral

Theteachingrequirementofthischapteristomasterthe

propertyandcalculationoftheintegraloftheconstantofthe

parametricvariable,andtograsptheuniformconvergenceof

theimproperintegraloftheparametricvariable

Theconceptofuniformlyconvergentdiscrimination,the

propertiesofuniformlyconvergentimproperintegralandits

applicationinintegralcomputation,masteringEuler

Calculationofintegral.

Thesixteenthchapter,Fourierseries

Section1.Fourierseriesexpansionofafunction

Convergencecriteriaofsection2.oftheFourierseries

SpertiesofFourierseries

4.FourierandFourierintegraltransform

Section5.fastFouriertransform

TheteachingrequirementofthischapteristograsptheFourier

seriesexpansionmethodofperiodicfunctionandmasterthe

convergencejudgmentmethodofFourierseries

ThepropertiesofFourierserieshaveapreliminary

understandingoftheFouriertransformandtheFourier

integral.

testquestions

First,answerthefollowingquestions

1,

LimitLim,Tan,Tan

Sin,In()

X

X

ToX

9

2?

Two

One

2,

(ex1)3Exdx.+formula

3,

Limitlim.

X

XX

Xxx

++

+++

100101

010010001

Two

32

4,

YxTDT,fory.x=formula'3

Zero

2sin2

5,

setup

FXbeg,amongthem

Xxx

Xxx

0=f(a)f(a)a

+=?

>?

???

??

++?

Two

Two

11

21

110

6,

Seekthelimit

Lim

XLN

X

ToX

9

One

21

7,lety=(3x+1)In(3x+1),y

8,

Seekdx.

X

Xformula?

21

02

Three

One

9,setY,x,x,e,x,dy.

X()=?

32

One

10,

Theimplicitfunctiondeterminedbytheconstantofthe

equation

Differential

Xyaa

YYxdy

Two

Three

Two

Three

Two

+=3>0

0

0

H,

SetbyandbyOK

Trytofind

Y,y,x,x,s,y,s

Dy

DX

=0=(1+2)1=(1),

221

Two

12,setY,y,x,determinedbyequationye,y

Xy

==,X,

+

0,

13,ifx>0,provex+,1+,x>2x,2In()2

14,

ForFormula1

Sixteen

14xx

DX

15,

Forthemainpurpose.?

Two

1x4x2

DX

16,

(1)(1)

D

Formula2+X+X

X

Two.Answerthefollowingquestions

1,todoaconefunnel,itsbuslength20cm,tomakeitthe

largestvolume,askhowhighitshouldbe?

2,thecurvey=2,x2andy=xsurroundedbytheplanefigure

ofthearea

3,thecurvey=x2andy=x3onthesurfaceofthe[0,1]

surroundedbytheareaoftheplane

Three.Answerthefollowingquestions

Itisprovedthattheequationx5,7x=4,hasatleastone

realrootintheinterval(1,2)

Four.Answerthefollowingquestions

Determinetheconcavityandconvexityofthecurvey=(x+3)

xon[0++)

Secondpart

(1)CourseName:differentialgeometry

(2)basiccontent:theclassicaltheoryofcurvesandsurfaces

inthree-dimensionalspace.Themaincontentsare:

Thecurvetheory,including:thetangentvectorandthearc

lengthofcurve;andfromtheprincipalnormalvectormethod

vector;curvatureandtorsion;Frenet

TheframeandtheFrenetformula,thelocalstructureofthe

curve,thebasictheoremofthecurvetheory,andsomeintegral

propertiesoftheplanecurve,

Suchastangentrotationindextheorem,geometricpropertyof

convexcurve,IsoperimetricInequality,fourvertextheorem

and

Cauchy-Croftonformula.Someglobalpropertiesofspacecurves,

suchastheCroftonformulaofsphericalsurface,Fenchel

Fary-Milnorandtheorem.

Thelocaltheoryofsurfacesincludes:representationof

surfaces,tangentvectors,normalvectors,rotationsurfaces,

ruledsurfaces,andsurfaces

Developthesurface;thefirstfundamentalformandthe

intrinsicquantityofthesurface;thesecondfundamentalform

ofthesurface;theactiveframeonthesurface

Thebasicformula;asymptoteandWeingartentransformandthe

conjugatecurvedline;curvature;principalcurvatureand

principaldirection,.

Gausscurvatureandmeancurvature;thelocalstructureofthe

surface;theGaussmappingandthethirdfundamentalform;the

wholeumbilicalcurve

Surface,minimalsurfaceandconstantGausscurvaturesurface;

thebasictheoremofsurfacetheory;geodesiccurvatureand

geodesic;vector

Parallelmovement.

Basicrequirements:throughthestudyofthiscourse,students

shouldmastersomebasicgeometricconceptsandresearchin

curvetheoryandsurfacetheory

Somecommonmethodsoffractalgeometry.Inordertofurther

studyandstudymoderngeometrytolaythefoundation;onthe

otherhand,culture

Abilitytocombinetheorywithpracticeandanalyzeproblems

andsolveproblems.

Two,teachingoutline

Chapter1curvetheoryofthree-dimensionalEuclideanspace

Section1arctangentvectorcurvelength

Teachingrequirements:understandthebasicconceptsofcurves,

findthetangentvectorandarclengthofcurves,andusearc

lengthparameterstorepresentthecurve

Line。

Section2mainvectorandnormalvectorfromthecurvatureand

torsion

Teachingrequirements:understandingthecurvatureandtorsion

andnormalvectorandnormalvector,fromcloseplaneandthe

tangentplanefromthebasicconcept

Accounting,curvature,andtorsion.

Section3FrenetframeFrenetformula

Teachingrequirements:MasterFrenetformula,canuseFrenet

formulatosolvepracticalproblems.

Section4inaneighboringpropertycurve

Teachingrequirements:expressingthelocalcanonicalformof

acurveinafield,andunderstandingthesetsenseofthe

interferencesign.

Thebasictheoremofsection5curvetheory

Teachingrequirements:graspthebasictheoremofcurvetheory,

andcanfindsomesimplecurvesofknowncurvatureand

disturbance.

Someofthenatureofthewholesection6planecurve

6.1someconceptsaboutclosedcurves

6.2rotationindextheoremoftangents

6.3convexcurve*

6.4IsoperimetricInequality*

6.5,fourvertextheorem*

6.6Cauchy-Croftonformula*

Teachingrequirements:understandsomebasicconceptsofplane

curve:closedcurve,simplecurve,tangentimage,relative

wholecurve

Rotationindexandconvexcurve.Mastersomegeneralproperties

ofplanecurve:simpleclosedcurvecut

Theindextheoremofrotation,thegeometricpropertyofconvex

curve,IsoperimetricInequality,fourvertextheoremand

Cauchy-Croftonformula.

Thenatureofthewholesection7spacecurve

Croftonformulaof7.1sphere*

7.2Fencheltheorem*

7.3Fary-MiInortheorem*

Teachingrequirements:understandingtheconceptoftotal

curvature.Graspsomeoftheglobalpropertiesofthespace

curve:theCroftonofthesphere

Formula,FencheltheoremandFary-MiInortheorem.

Thesecondchapteristhelocalgeometryofthecurvedsurface

in3DEuclideanspace

Said1surfacetangentvectorvectormethod

1.1definitionofsurface

Tangentplaneof1.2tangentvectors

1.3normalvector

1.4parametricrepresentationofsurfaces

1.5cases

1.6,parametricsurfacefamily,planefamily,enveloping

surface,developablesurface

Teachingrequirements:graspthreelocalanalytic

representationsofthesurface,findthetangentplaneand

normalofthesurface,andunderstandtherotationalsurface

Andruledsurface;graspthefeatureofdevelopablesurface.

First,secondbasicforms,2surface

2.1thefirstfundamentalformofasurface

Orthogonalparametriccurvenetworkof2.2surfaces

Intrinsicgeometryof2.3equidistantcorrespondingsurfaces

2.4conformalcorrespondence

2.5thesecondfundamentalformofasurface

Teachingrequirements:graspthefirstbasicformofthe

surfaceandrelatedquantities-thearclengthofthecurve

onthesurfaceandthecurveofthetwointersection

Thecalculationofintersectionangleandarea,andunderstand

itsgeometricmeaning;understandingisometryandconformal

mapping;master

Secondbasicform.

Thebasicformulaofsection3onthesurfaceoftheframe

surface

3.1theConventionofomittingandtypingmarks

Thebasicformulaofthemovableframesurfaceon3.2surfaces

3.3WeingartentransformW

Conjugatedirectionasymptoteasymptoticdirectionof3.4

surfaces

Teachingrequirements:graspthebasicformulaofthemovable

frameandsurfaceonthesurface,andcanfindtheconnection

systemoftheorthogonalparametriccurvenet

Number;understandtheWeingartentransformandconjugate

directionsandasymptoticdirections,andfindsomesimple

curves

Asymptoticcurve.

Section4surfacecurvature

Thenormalcurvatureofacurveona4.1surface

4.2principalprincipalcurvatures

4.3Dupinreticle

4.4curvature

4.5principalcurvatureandcurvaturelinecalculation,total

curvature,meancurvature

4.6curvaturenetwork

Theshapeof4.7surfacesadjacenttoonepoint

The4.8Gaussmappingandthethreefundamentalform

4.9thetotalcurvatureandmeancurvaturesatisfysome

propertiesofthesurface

Teachingrequirements:understanding,curvature,principal

directionandprincipalcurvature,curvatureline,total

curvatureandmeancurvature,conceptsandgeometricmeanings

Yi,andwillcalculatethem;grasptheGaussmappingandthe

threebasicform;beabletotunethewholenavel

Surfacesareclassifiedwiththetotalcurvatureofthesurface

aszero.Graspthegeometricmeaningoftheminimalsurfaceand

askforsomesimplicity

Singleminimalsurface.

Thebasictheoremofthebasicequationsandthe5surfaceon

thesurface

5.1basicequationsofsurface

5.2fundamentaltheoremofsurfacetheory

Teachingrequirements:masteringandunderstandingthebasic

equationsofsurfaceandthebasictheoremofsurfacetheory.

Section6geodesicgeodesiccurvature

6.1geodesiccurvaturevectorgeodesiccurvature

6.2Liouvilleformulaforgeodesiccurvature

6.3geodesic

Geodesiccoordinatesystemofgeodesiccoordinatesystemin6.4

coordinatesystem

6.5applications

6.6grounddisturbancerate

6.7Gauss-Bonnetformula

Teachingrequirements:understandingandmasteringthe

geodesiccurvatureandgeodesic,grounddisturbance,normal

coordinatesystem,geodesiccoordinatesystemandmeasurement

Thedefinitionandgeometricmeaningoftheearthcoordinate

system.Thegeodesiccurvatureandgeodesiccanbecalculated

byusingtheLiouvilleformula

Line;canusethepolarcoordinatesystemtostudythecurved

surfacewhosetotalcurvatureisconstant;understand(part)

Gauss-Bonnetformula.

Parallelmotionvectoronthesurfaceofthesection7

7.1vectorsmovingalongasurfaceofacurve;absolutemotion;

absolutedifferentiation

7.2thenatureofabsolutedifferential

7.3selfparallelcurve

Seven

?

?

???

?

???

?

?

?

???

9

9

???

9

9

Arightsideis2

123

12242

62,R,h,h,H

HH??

???

?

++?

SoTisin(1,2,-)

1)theFderivativeatthatpointisthtransformationof

123,h,h,andhto(62,242),12123,h,h,H+H+H.

[Note1:thisanswermaintainsthewaytheoriginalquestion

isrepresentedbythelinevector..

[Note2:whenT:R3=R2means23

Two

Two

2,

32R

Z

Y

X

YXZR

Xy

Z

Y

T

??

?

?

??

?

9

A???

9

???

+

二?

???

?

??

9

9

CanwegetTin?

?

?

?

??

?

?

Z

Y

X

TheF-derivativeat..:

???

?

???

??

=?

?

?

9

??

9

?

??

?

9

??

9

?

ZYX

X

z

Y

X

T

222

620

Thatis,3

Three

Two

One

Three

Two

One

Three

Two

1,

222

620

R

Hhh

Hhh

ZYx

X

Hhh

Z

Y

X

T

??

9

9

??

9

?

?

??

9

?

??

9

?

???

?

???

??

??

?

?

??

?

9

??

9

?

??

?

9

??

?

9

??

?

?

So二

??

?

?

??

?

?

??

?

?

??

9

9

??

?

?

??

9

?

?

Three

Two

One

One

Two

One

H

HH

T3

Three

Two

One

123

21422,

62R

Hhh

Hhh

HandH

??

?

?

??

9

?

???

????

++?

9

Or?

??

?

???

?

?

?

二?

9

9

?

??

?

?

??

?

?

???

?

?

242

620

One

Two

One

T,theactionofanoperatoronavectorisrepresentedbya

vectoroftheleftmultiplicationofthevectorinthe

correspondingmatrix..

Thirdpart

1.basictheoremofHigherAlgebra

LetKbeanumberfield.TheunityofapolynomialinXwhose

coefficientsarerepresentedbyK[x]onK.If

(...)(0)0

One

01fxx=a+A+X+a=K?Xa=n

NncallsnthenumberofF(x),andisdenotedasDEGF(x).

Theorem(thebasictheoremofhigheralgebra)anyelementof

C[x]musthavezeroinC.

Propositionset()(01)0

One

01fxx=a+A+A+X?A=n=n

N,N,isanpolynomialonC,andais

Apluralnumber.Thereisanwhosefirstfactoris0a,and

the1polynomialQ(x)makesC

F(x)=q(x)(x,a)+F(a)

Mathematicalinductionofnisproved.

Corollary0xf(x)zero,ifandonlyif(0)x?Xf(x)factor

(includingDEGF(x)=1).

Proposition(equivalentpropositionofthebasictheoremof

higheralgebra)n

F(x)=a,x,N+,a,x,N,1+,+A

01

(01)a=0,n=npolynomialC,itcanbedecomposedintoa

productoffactorNcomplex,namely

N,a,a,,a12,make

()())nx=ax=xfalphaxalpha

Itisprovedthatthemathematicalinductionofnismadeby

usingthebasictheoremofHigherAlgebraandproposition1.3.

2.anotherexpressionofthebasictheoremofHigherAlgebra

ThedefinitionofKisanumberfield,andXisanunknown

quantity,thenanequation

…01

One

01++++=?

?

Nn

A,x,N,a,x,N,a,x,a()

(ofwhich,0010a,a...A...A=K=n)iscalledthenumber

fieldKanalgebraicequation;ifx=Alpha,K

Enter(1),andthenmakeitanequation,calledalpha(equation

1),arootinK.

Theorem(anotherformofthefundamentaltheoremofalgebra)

numberfieldKn(1)algebraicequationsinthecomplexdomain

C

Theremustbearootinside.

Thepropositionaln-algebraequationhasandhasexactlyn

roots(repeated)inthecomplexdomainC.

Proposition(anotherformofexpressionofthefundamental

theoremofhigheralgebra)giventwoNandMpolynomialsonC

().....(0)=01+++=n

N

N,F,x,a,a,x,a,x,a,

().....(0)=01+++=m

M

M,G,x,B,B,x,B,x,b,

IfthereisawholenumberL,1=m,1=nandL+1different

complex121,,1...L+betabetabetabeta,so

F()=g()(I,=1,2,...,L+1),I,I,beta,beta,

Thenf(x)=g(x).

1.2.2'stheoremandpropertiesofrootsofalgebraicequations

withrealcoefficients

1

01()nn

Nfx=ax+ax?+L+a,0I,0a,a=K,Letf(x)=0forcomplex

roots

12,nalpha,Lalpha(possiblyrepeated),then

12

01

One

1212

100000

0.

N

In

I

Nn

Nn

F,x,x,x,x,X

A

Xx

Alphaalphaalpha

Alpha,alpha,alpha,alpha

?

===???

=+++++

PIL

LLL

therefore

⑴()12

One

Zero

One

Na

A=alpha+alpha+L+alpha;

Sigma

<<<

=?

Iin

IIa

A

12

12

Zero

Two

Zero

2(1)alpha;

LLLLLLLL

(1)12

Zero

N

Nn

A

A=alphaalphaLalpha

Weremember

(=,)1012=nsigma,alpha,alpha,L,alpha;

N,N,sigma1,alpha1,alpha2,L,alpha=Alpha1+alpha2,

+L+alpha

LLLLLLLL

PI

Islessthanorlessthanlessthanorequalto

Ilin

R,N,I,I,I

R

R

L

LL

12

12

Zero

12sigma(alpha,alpha,alpha)alphaalpha;

LLLLLLLL

N,N,N,sigma,1,alpha,2,L,alpha,1,alpha,2L,alpha(,,,)

(12,N,sigma,L,sigma,called12,elementarysymmetric

polynomialsofN,alpha,L,alpha).Hence

Theorem2.5(theWeitheorem)sets1

01()nn

Nfx=ax+ax?+L+a,0I,0a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论