八下数学《平行四边形》培优试卷-(A4含答案)_第1页
八下数学《平行四边形》培优试卷-(A4含答案)_第2页
八下数学《平行四边形》培优试卷-(A4含答案)_第3页
八下数学《平行四边形》培优试卷-(A4含答案)_第4页
八下数学《平行四边形》培优试卷-(A4含答案)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE..《平行四边形》竞赛试题总分120分,时间120分钟一、填空题〔共9小题,每小题3分,满分27分1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.〔填一个即可3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.〔1四边形ADEF是_________;〔2当△ABC满足条件_________时,四边形ADEF为菱形;〔3当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题〔共9小题,每小题3分,满分27分10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是〔A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是〔A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=〔A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=〔A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是〔A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为〔A.98B.196C.280D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为〔A.12mB.20mC.22mD.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则〔A.AD>BCB.AD<BCC.AD=BCD.AD与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:〔1AB∥CD;〔2BC∥AD;〔3AB=CD;〔4BC=AD;〔5∠A=∠C;〔6∠B=∠D.任取其中两个,可以得出"四边形ABCD是平行四边形"这一结论的情况有〔A.4种B.9种C.13种D.15种三、解答题〔共10小题,满分66分19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.〔1求证:△ACD≌△CBF;〔2点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.〔1求证:EO=FO;〔2当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB〔如图②解答问题:〔1设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2〔填">""="或"<".〔2如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.〔3如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.〔4在〔3中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.〔1求证:直线PQ是线段DE的垂直平分线;〔2如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题〔共9小题,每小题4分,满分36分1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。专题:几何图形问题。分析:首先过A作AG⊥BD于G.根据等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,则PE+PF=AG.利用勾股定理求得BD的长,再根据三角形的面积计算公式求得AG的长,即为PE+PF的长.解答:解:如图,过A作AG⊥BD于G,则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×〔PE+PF,∵S△AOD=S△AOP+S△POD,∴PE+PF=AG,∴等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,∴PE+PF=AG.∵AD=12,AB=5,∴BD==13,∴,∴.故答案为:.点评:本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是明白等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.2.〔2003•XX如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是BE=DF.〔填一个即可考点:平行四边形的判定。专题:开放型。分析:要使四边形AECF也是平行四边形,可增加一个条件:BE=DF.解答:解:使四边形AECF也是平行四边形,则要证四边形的两组对边相等,或两组对边分别平行,如果BE=DF,则有:∵AD∥BC,∴∠ADF=∠CBE,∵AD=BC,BE=DF,∴△ADF≌△BCE,∴CE=AF,同理,△ABE≌△CFD,∴CF=AE,∴四边形AECF是平行四边形.故答案为:BE=DF.点评:本题考查了平行四边形的判定,是开放题,答案不唯一,本题利用了平行四边形和性质,通过证△ADF≌△BCE,△ABE≌△CFD,得到CE=AF,CF=AE利用两组对边分别相等来判定平行四边形.3.如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=4.8.考点:矩形的性质。专题:计算题。分析:矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.解答:解:矩形各内角为直角,∴△ABD为直角三角形在直角△ABD中,AB=6,AD=8则BD==10,∵△ABD的面积S=AB•AD=BD•AE,∴AE==4.8.故答案为4.8.点评:本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,本题中根据勾股定理求BD的值是解题的关键.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.〔1四边形ADEF是平行四边形;〔2当△ABC满足条件AB=AC时,四边形ADEF为菱形;〔3当△ABC满足条件AB=AC=BC时,四边形ADEF不存在.考点:等边三角形的性质;平行四边形的判定;菱形的判定。专题:证明题。分析:〔1先证明△ABC≌△DBE,△ABC≌△FEC,则DE=AC=AF,FE=AB=AD,则四边形ADEF是个平行四边形;〔2当AB=AC时,四边形ADEF为菱形;〔3当AB=AC=BC时,四边形ADEF不存在.解答:解:〔1四边形ADEF是个平行四边形在△ABC和△DBE中,∵BC=BE,BA=BD,∠DBE=∠ABC〔与∠ABE之和都等于60°,∴△ABC≌△DBE,∴DE=AC,在△ABC和△FEC中,∵BC=EC,CA=CF,∠ACB=∠FCE〔都为60°角与=∠ACE之和,∴△ABC≌△FEC,∴FE=AB,∴DE=AC=AF,FE=AB=AD,∴四边形ADEF是个平行四边形;〔2当△ABC为等腰三角形并且不是等边三角形时,即AB=AC时,由第〔1题中可知四边形ADEF的四边都相等,此时四边形ADEF是菱形;〔3当△ABC为等边三角形时,即AB=AC=BC时,四边形ADEF中的A点与E点重合,此时以A、D、E、F为顶点的四边形不存在.点评:本题考查了平行四边形、菱形的判定以及等边三角形的性质.5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为.考点:勾股定理的逆定理;勾股定理。专题:探究型。分析:先根据三角形的一边长为2,这边上的中线为1判断出此三角形是直角三角形,在设另两边分别为x、y两用完全平方公式可用x2+y2表示出xy的值,再由勾股定理即可求出x2+y2,进而可求出xy的值.解答:解:∵三角形的一边长为2,这边上的中线为1,可知这边上的中线等于这条边的一半,∴此三角形是个直角三角形,斜边为2,设另两边分别为x、y,两边之和x+y=1+,∴〔x+y2=〔1+2=4+2,∴xy=2+﹣,又∵直角三角形两直角边的平方等于斜边的平方,∴x2+y2=4,∴xy=2+﹣2=.故答案为:.点评:本题考查的是勾股定理的逆定理及勾股定理,根据已知条件判断出三角形的形状是解答此题的关键,解答此题时不要根据另两边之和为1+即可盲目的设一边为1,另一边为.6.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有5对四边形面积相等;它们是▱AEPG与▱PHCF、▱EFCB与▱ABHG、▱GHCD与▱EFDA、梯形ABPG与梯形BCFP、四边形PHCD与四边形AEPD.考点:平行四边形的性质。分析:由题意可证四边形EPHB为平行四边形,再根据平行四边形的对角线将平行四边形的面积平分,从而求解.解答:解:∵EF∥BC,GH∥AB,∴四边形EPBH为平行四边形,∵BP为平行四边形EPBH的对角线,∴△EBP与△BHP的面积相等,∵BD为平行四边形ABCD的对角线,∴△ABD与△BCD面积相等,∵PD为平行四边形PFDG的对角线,∴△GPD与△PFD面积相等,∴▱AEPG与▱PHCF面积相等;▱EFCB与▱ABHG面积相等;▱GHCD与▱EFDA面积相等、梯形ABPG与梯形BCFP、梯形PHCD与梯形AEPD.共5对,故答案为:5,▱AEPG与▱PHCF、▱EFCB与▱ABHG、▱GHCD与▱EFDA、梯形ABPG与梯形BCFP、梯形PHCD与梯形AEPD.点评:此题主要考查平行四边形的性质及其面积公式,比较简单.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为.考点:菱形的性质;勾股定理。专题:计算题。分析:根据∠ABC=60°可以求得∠ABO=30°,即AB=2AO,设AO=x,则AB=2x,根据勾股定理即可求得OB=x,求得x的值即可求得AC,BD的长度,即可计算菱形ABCD的面积.解答:解:菱形对角线即角平分线∠ABC=60°可以求得∠ABO=30°,即AB=2AO,设AO=x,则AB=2x,则OB==x,即〔3+x=3+即x=1,∴菱形的对角线长为2、2,故菱形ABCD的面积为S=×2×2=2.故答案为2.点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形对角线互相垂直且平分一组对角的性质,本题中根据勾股定理求x的值是解题的关键.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为75度.考点:矩形的性质;等边三角形的判定与性质。专题:计算题。分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解答:解:∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.点评:此题综合考查了等边三角形的判定、等腰三角形的性质、矩形的性质等知识点.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.考点:勾股定理;全等三角形的判定与性质。专题:计算题。分析:因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.解答:解:易证△AFD′≌△CFB,∴D′′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,〔8﹣x2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为10.点评:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、选择题〔共9小题,每小题5分,满分45分10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是〔A.60°B.65°C.70°D.75°考点:平行四边形的性质;等腰三角形的性质;直角三角形斜边上的中线。专题:计算题。分析:由DE=2AB,可作辅助线:取DE中点O,连接AO,根据平行四边形的对边平行,易得△ADE是直角三角形,由直角三角形斜边上的中线是斜边的一半,即可得△ADO,△AOE,△AOB是等腰三角形,借助于方程求解即可.解答:解:取DE中点O,连接AO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB=180°﹣∠ABC=105°,∵AF⊥BC,∴AF⊥AD,∴∠DAE=90°,∴OA=DE=OD=OE,∵DE=2AB,∴OA=AB,∴∠AOB=∠ABO,∠ADO=∠DAO,∠AED=∠EAO,∵∠AOB=∠ADO+∠DAO=2∠ADO,∴∠ABD=∠AOB=2∠ADO,∴∠ABD+∠ADO+∠DAB=180°,∴∠ADO=25°,∠AOB=50°,∵∠AED+∠EAO+∠AOB=180°,∴∠AED=65°.故选B.点评:此题考查了直角三角形的性质〔直角三角形斜边上的中线是斜边的一半、平行四边形的性质〔平行四边形的对边平行以及等腰三角形的性质〔等边对等角,解题的关键是注意方程思想的应用.11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是〔A.70°B.75°C.80°D.95°考点:菱形的性质;等腰三角形的性质;等边三角形的性质。专题:计算题。分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠B的度数.解答:解:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,设∠B=x,则∠BAD=180°﹣x,∠BAE=∠DAF=180°﹣2x,即180°﹣2x+180°﹣2x+60°=180°﹣x解得x=80°,故选C.点评:本题考查了正三角形各内角为60°、各边长相等的性质,考查了菱形邻角之和为180°的性质,本题中根据关于x的等量关系式求x的值是解题的关键.12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=〔A.2B.C.3D.考点:正方形的性质;勾股定理。专题:计算题。分析:用EF,BE,AB分别表示AP,BP,用CF,PF,DC分别表示DP,CP,得AP2+CP2=DP2+BP2,已知AP,BP,CP代入上式即可求DP.解答:解:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,故选A.点评:本题考查了勾股定理在直角三角形中的运用,考查了正方形各边相等的性质,本题中求证AP2+CP2=DP2+BP2是解题的关键.13.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=〔A.54°B.60°C.66°D.72°考点:菱形的判定与性质;平行四边形的性质。专题:计算题。分析:过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.解答:解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选D.点评:此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是〔A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形考点:平行四边形的判定;非负数的性质:偶次方;完全平方公式。专题:规律型。分析:对于所给等式a2+b2+c2+d2=2ac+2bd,先移项,故可配成两个完全式,即〔a﹣c2+〔b﹣d2=0,进而可得a=c,b=d,四边形中两组对边相等,故可判定是平行四边形.解答:解:a2+b2+c2+d2=2ac+2bd可化简为〔a﹣c2+〔b﹣d2=0∴a=c,b=d∵a,b,c,d分别为四边形ABCD的四边∴a=c,b=d即两组对边分别相等,则可确定其为平行四边形.故选B.点评:此题主要考查平行四边形的判定问题,正确的对式子进行变形,熟练掌握平行四边形的判定定理是解题的关键.15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为〔A.98B.196C.280D.284考点:一元一次方程的应用。专题:几何图形问题。分析:此题要理解长方形ABCD的面积是不变的,用不同的方法表示即是此题的等量关系,也就是7个小长方形的面积和与大长方形的面积相等.还要注意设小长方形的宽为x,则其长为34﹣6x,大长方形的宽为34﹣5x,长为5x,根据等量关系列方程即可.解答:解:设小长方形的宽为x.根据题意得:7x〔34﹣6x=5x〔34﹣5x化简得:7〔34﹣6x=5〔34﹣5x解得:x=4则大长方形的面积为5x〔34﹣5x=280故选C.点评:此题锻炼了学生的识图能力,关键是分清7个小长方形是如何组合成大长方形的,还要注意设小的比较简单.16.〔2003•XX如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为〔A.12mB.20mC.22mD.24m考点:菱形的性质;等边三角形的性质。专题:应用题。分析:连接AC,根据已知可得到△ABC为正三角形,从而可求得正六边形的边长是△ABC边长的,已知种花部分图形共有10条边则其周长不难求得.解答:解:连接AC,已知∠A=120°,ABCD为菱形,则∠B=60°,从而得出△ABC为正三角形,以△ABC的顶点所在的小三角形也是正三角形,所以正六边形的边长是△ABC边长的,则种花部分图形共有10条边,所以它的周长为×6×10=20m,故选B.点评:此题主要考查了菱形的性质,等边三角形的性质的运用.17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则〔A.AD>BCB.AD<BCC.AD=BCD.AD与BC的大小关系不能确定考点:平行四边形的判定与性质。分析:根据条件AB+BC=CD+DA,可以延长AB至E使BE=BC,延长CD至F使DF=DA,连接CE,AF,这样的辅助线,然后根据平行四边形的判定定理得出四边形AECF为平行四边形,再利用三角形全等可以得出AD与BC的大小关系.解答:解:延长AB至E使BE=BC,延长CD至F使DF=DA,连接CE,AF,∵AB+BC=CD+DA,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,∴∠E=∠F,CE=AF,又∵BE=BC,DF=AD,∴∠E=∠BCE=∠F=∠DAF,∵CE=AF,∴△AFD≌△BEC,∴AD=BC,故选C.点评:此题主要考查了平行四边形的性质与判定,延长AB至E使BE=BC,延长CD至F使DF=DA,这种辅助线的作法是由条件AB+BC=CD+DA所决定的,同学们做今后做题过程中,应该学会应用.18.已知四边形ABCD,从下列条件中:〔1AB∥CD;〔2BC∥AD;〔3AB=CD;〔4BC=AD;〔5∠A=∠C;〔6∠B=∠D.任取其中两个,可以得出"四边形ABCD是平行四边形"这一结论的情况有〔A.4种B.9种C.13种D.15种考点:平行四边形的判定。分析:平行四边形的五种判定方法分别是:〔1两组对边分别平行的四边形是平行四边形;〔2两组对边分别相等的四边形是平行四边形;〔3一组对边平行且相等的四边形是平行四边形;〔4两组对角分别相等的四边形是平行四边形;〔5对角线互相平分的四边形是平行四边形.根据平行四边形的判定,任取两个进行推理.解答:解:根据平行四边形的判定,符合四边形ABCD是平行四边形条件的有九种:〔1〔2;〔3〔4;〔5〔6;〔1〔3;〔2〔4;〔1〔5;〔1〔6;〔2〔5;〔2〔6共九种.故选B.点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.三、解答题〔共11小题,满分0分19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.考点:平行四边形的判定与性质;三角形的外角性质;全等三角形的判定与性质。专题:证明题。分析:从角的角度证明困难,连接EF,在四边形AGFE的背景下思考问题,证明四边形AGFE为特殊平行四边形,证题的关键是能分解出直角三角形中的基本图形.解答:证明:连接EF.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C.∵BE、AF分别是∠ABC、∠DAC的平分线.∴∠ABG=∠EBD.∵∠AGE=∠GAB+∠GBA,∠AEG=∠C+∠EBD,∴∠AGE=∠AEG,∴AG=AE,∵AF是∠DAC的平分线,∴AO⊥BE,GO=EO,∵∴△ABO≌△FBO,∴AO=FO,∴四边形AGFE是平行四边形,∴GF∥AE,即GF∥AC.点评:此题主要考查平行四边形的判定与性质,三角形的外角性质和全等三角形的判定与性质的综合运用.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.考点:等腰直角三角形;全等三角形的判定与性质。专题:证明题。分析:此题关键是证△PBC≌△PDB,已有PC=PD,PB是公共边,只需再证明∠BPD=∠CPB,而∠BPD=∠APG,则证明∠APG=∠CPB,进而需要证明∠1=∠2,可利用同角的余角相等证明.解答:解:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,∴CEPF是矩形〔三角都是直角的四边形是矩形,∴OP=OF,∠PEF+∠3=90°,∴∠1=∠3,∵PG⊥EF,∴∠PEF+∠2=90°,∴∠2=∠3,∴∠1=∠2,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴∠APE=∠BPF=45°,∴∠APE+∠2=∠BPF+∠1,即∠APG=∠CPB,∵∠BPD=∠APG,∴∠BPD=∠CPB,又∵PC=PD,PB是公共边,∴△PBC≌△PBD〔SAS,∴BC=BD,∠PBC=∠PBD=45°,∴∠PBC+∠PBD=90°,即BC⊥BD.故证得:BC⊥BD,且BC=BD.点评:本题主要考查三角形全等的判定和性质,综合利用了等腰直角三角形的性质,和矩形的判定和性质等知识点,难度较大.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.考点:等腰三角形的性质;三角形内角和定理;全等三角形的判定与性质;平行四边形的判定与性质。专题:综合题。分析:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,根据平行四边形的性质可得到BD=CF,DA∥FC,再利用SAS判定△ADE=△CEF,根据全等三角形的性质可得到ED=EF,从而可推出△DEF为等边三角形,∠BAC=x°,则∠ADF=∠ABC=,根据三角形内角和定理可分别表示出∠ADE,∠ADF,根据等边三角形的性质不难求得∠BAC的度数.解答:解:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,∴BD=CF,DA∥FC,∴∠EAD=∠ECF,∵AD=CE,AE=BD=CF,∴△ADE≌△CEF〔SAS∴ED=EF,∵ED=BC,BC=DF,∴ED=EF=DF∴△DEF为等边三角形设∠BAC=x°,则∠ADF=∠ABC=,∴∠DAE=180°﹣x°,∴∠ADE=180°﹣2∠DAE=180°﹣2〔180°﹣x°=2x°﹣180°,∵∠ADF+∠ADE=∠EDF=60°∴+〔2x°﹣180°=60°∴x=100.∴∠BAC=100°.点评:此题主要考查等腰三角形的性质,三角形内角和定理,平行四边形的判定与性质及全等三角形的判定与性质的综合运用.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.〔1求证:△ACD≌△CBF;〔2点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质。专题:证明题。分析:〔1在△ACD和△CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.〔2当∠DEF=30°,即为∠DCF=30°,在△BCF中,∠CFB=90°,即F为AB的中点,又因为△ACD≌△CBF,所以点D为BC的中点.解答:证明:〔1由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,CD=BF,所以△ACD≌△CBF.〔2当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC〔SAS,又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=×60°=30°则∠DEF=∠FCD=30°.点评:本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.〔2002•XX如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.考点:等腰三角形的判定。专题:证明题。分析:根据已知,利用SAS判定△AEM≌△BFM,从而得到EM=FM;根据角之间的关系可求得∠EMF=90°,即△MEF是等腰直角三角形.解答:解:△MEF是等腰直角三角形.证明如下:连接AM,∵M是BC的中点,∠BAC=90°,AB=AC,∴AM=BC=BM,AM平分∠BAC.∵∠MAC=∠MAB=∠BAC=45°.∵AB⊥AC,DE⊥AC,DF⊥AB,∴DE∥AB,DF∥AC.∵∠BAC=90°,∴四边形DFAE为矩形.∴DF=AE.∵DF⊥BF,∠B=45°.∴∠BDF=∠B=45°.∴BF=FD,∠B=∠MAE=45°,∴AE=BF.∵AM=BM∴△AEM≌△BFM〔SAS.∴EM=FM,∠AME=∠BMF.∵∠AMF+∠BMF=90°,∴∠AME+∠AMF=∠EMF=90°,∴△MEF是等腰直角三角形.点评:此题主要考查学生对等腰三角形的判定的理解及运用;得到AE=BF是正确解答本题的关键.24.〔2008•XX如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.〔1求证:EO=FO;〔2当点O运动到何处时,四边形AECF是矩形?并证明你的结论.考点:矩形的判定。专题:几何综合题。分析:〔1根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证.〔2根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证解答:〔1证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,〔2分同理,FO=CO,〔3分∴EO=FO.〔2解:当点O运动到AC的中点时,四边形AECF是矩形.∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,〔6分∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90度,〔7分∴四边形AECF是矩形.〔8分点评:本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向"纵、横、深、广"拓展,从而寻找出添加的条件和所得的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.考点:正方形的性质;全等三角形的判定与性质;等边三角形的判定与性质。专题:计算题。分析:求证△DEC≌△BAC,得DE=AB,再求证DF=DE即可解此题.解答:解:∵△ABC为直角三角形,∠C=60°,∴∠BAC=30°,∴BC=AC,∵D为AC的中点,∴BC=DC,∴在△DEC≌△BAC中,,∴△DEC≌△BAC,即AB=DE,∠DEB=30°,∴∠FED=60°,∵EF=AB,∴EF=DE,∴△DEF为等边三角形,即DF=AB,在直角三角形ABC中,BC=2,则AC=4AB==.答:DF的长为.点评:本题考查了等腰三角形各边均相等,考查了矩形内角均为直角的性质,本题中求证△DEF是等边三角形是解题的关键.26.菱形的对角线AC与BD交于点O,若菱形ABCD的面积为24,AC=6,则菱形的边长为5.考点:菱形的性质。专题:计算题。分析:根据菱形ABCD的面积和AC可以计算BD的长,在Rt△ABO中,已知AO、BO根据勾股定理即可求得AB的值,即可解题.解答:解:菱形ABCD的面积S=AC•BDS=24,AC=6,则BD=8,∴AO=CO=3,BO=DO=4在Rt△ABO中,AB==5,故答案为5.点评:本题考查了菱形面积的计算公式,考查了勾股定理在直角三角形中的运用,本题中根据AO、BO的值求AB的值是解题的关键.27.〔2002•XX阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB〔如图②解答问题:〔1设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1=S2〔填">""="或"<".〔2如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画1个,利用图③把它画出来.〔3如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出3个,利用图④把它画出来.〔4在〔3中所画出的矩形中,哪一个的周长最小?为什么?考点:矩形的性质。专题:代数几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论