版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限.4.直角坐标系中,点A(-2,3)在第四象限.5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数.2.函数y=4x+1是正比例函数.3.函数是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2).7.反比例函数的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=.2.sin260°+cos260°=1.3.2sin30°+tan45°=2.4.tan45°=1.5.cos60°+sin30°=1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.通过圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程的根为.A.x=2B.x=-2C.x1=2,x2=-2D.x=42.方程x2-1=0的两根为.A.x=1B.x=-1C.x1=1,x2=-1D.x=23.方程(x-3)(x+4)=0的两根为.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-44.方程x(x-2)=0的两根为.A.x1=0,x2=2B.x1=1,x2=2C.x1=0,x2=-2D.x1=1,x2=-25.方程x2-9=0的两根为.A.x=3B.x=-3C.x1=3,x2=-3D.x1=+,x2=-知识点12:方程解的情况及换元法1.一元二次方程的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.不解方程,判别方程3x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.不解方程,判别方程4x2+4x-1=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x2-7x+5=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.不解方程,判别方程5x2+7x=-5的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.不解方程,判别方程x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.不解方程,判断方程5y+1=2y的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.A.y-5y+4=0B.y-5y-4=0C.y-4y-5=0D.y+4y-5=010.A.5y-4y+1=0B.5y-4y-1=0C.-5y-4y-1=0D.-5y-4y-1=011.用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是.A.y2+5y+6=0B.y2-5y+6=0C.y2+5y-6=0D.y2-5y-6=0知识点13:自变量的取值范围1.函数中,自变量x的取值范围是A.x≠2B.x≤-2C.x≥-2D.x≠-22.函数y=的自变量的取值范围是.A.x>3B.x≥3C.x≠3D.x为任意实数3.函数y=的自变量的取值范围是.A.x≥-1B.x>-1C.x≠1D.x≠-14.函数y=的自变量的取值范围是.A.x≥1B.x≤1C.x≠1D.x为任意实数5.函数y=的自变量的取值范围是.A.x>5B.x≥5C.x≠5D.x为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是A.y=-8xB.y=-8x+1C.y=8x2+1D.y=2.A.B.C.D.3.A.1个B.2个C.3个D.4个知识点15:圆的基本性质1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是A.50°B.80°C.90°D.100°2.圆周角∠BAD=°,则圆周角∠BCDA.100°B.130°C.80°D.50°3.圆心角∠BOD=°,则圆周角∠BCDA.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.507.°,则圆周角∠ACBA.100°B.130°C.200°D.508.圆周角∠BCD=°,则圆心角∠BODA.100°B.130°C.80°D.50°9.在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为cm.A.3B.4C.5D.1010.°,则圆周角∠ACBA.100°B.130°C.200°D.50°12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,假如一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交3.A.点在圆上B.点在圆内C.点在圆外D.不能拟定4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能拟定5.一个圆的周长为acm,面积为acm2,假如一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能拟定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能拟定7.已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交8.A.点在圆上B.点在圆内C.点在圆外D.不能拟定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是A.外离B.外切C.相交D.内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B.外切C.相交D.外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B.外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B.内切C.内含D.相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含知识点18:公切线问题1.假如两圆外离,则公切线的条数为.A.1条B.2条C.3条D.4条2.假如两圆外切,它们的公切线的条数为.A.1条B.2条C.3条D.4条3.假如两圆相交,那么它们的公切线的条数为.A.1条B.2条C.3条D.4条4.假如两圆内切,它们的公切线的条数为.A.1条B.2条C.3条D.4条5.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条知识点19:正多边形和圆1.假如⊙O的周长为10πcm,那么它的半径为A.5cmB.cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A.2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A.2B.1C.D.4.扇形的面积为,半径为2,那么这个扇形的圆心角为=.A.30°B.60°C.90°D.120°5.已知,正六边形的半径为R,那么这个正六边形的边长为.A.RB.RC.RD.6.圆的周长为C,那么这个圆的面积S=.A.B.C.D.7.正三角形内切圆与外接圆的半径之比为.A.1:2B.1:C.:2D.1:8.圆的周长为C,那么这个圆的半径R=.A.2B.C.D.9.已知,正方形的边长为2,那么这个正方形外接圆的半径为.A.2B.4C.2D.210.已知,正三角形的半径为3,那么这个正三角形的边长为.A.3B.C.3D.3知识点20:函数图像问题1.已知:关于x的一元二次方程的一个根为,且二次函数的对称轴是直线x=2,则抛物线的顶点坐标是A.(2,-3)B.(2,1)C.(2,3)D.(3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)3.一次函数y=x+1的图象在.A.4.函数y=2x+1的图象不通过.5.反比例函数y=的图象在.6.反比例函数y=-的图象不通过.7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)8.一次函数y=-x+1的图象在.9.一次函数y=-2x+1的图象通过.10.已知抛物线y=ax2+bx+c(a>0且a、b、c为常数)的对称轴为x=1,且函数图象上有三点A(-1,y1)、B(,y2)、C(2,y3),则y1、y2、y3的大小关系是.A.y3<y1<y2B.y2<y3<y1C.y3<y2<y1D.y1<y3<y2知识点21:分式的化简与求值1.计算:的对的结果为.A.B.C.D.2.计算:1-(的对的结果为.A.B.C.-D.-3.计算:的对的结果为.A.xB.C.-D.-4.计算:的对的结果为.A.1B.x+1C.D.5.计算的对的结果是.A.B.-C.D.-6.计算的对的结果是.A.B.-C.D.-7.计算:的对的结果为.A.x-yB.x+yC.-(x+y)D.y-x8.计算:的对的结果为.A.1B.C.-1D.9.计算的对的结果是.A.B.C.-D.-知识点22:二次根式的化简与求值1.已知xy>0,化简二次根式的对的结果为.A.B.C.-D.-2.化简二次根式的结果是.A.B.-C.D.3.若a<b,化简二次根式的结果是.A.B.-C.D.-4.若a<b,化简二次根式的结果是.A.B.-C.D.5.化简二次根式的结果是.A.B.C.D.6.若a<b,化简二次根式的结果是.A.B.-C.D.7.已知xy<0,则化简后的结果是.A.B.-C.D.8.若a<b,化简二次根式的结果是.A.B.-C.D.9.若b>a,化简二次根式a2的结果是.A.B.C.D.10.化简二次根式的结果是.A.B.-C.D.11.若ab<0,化简二次根式的结果是.A.bB.-bC.bD.-b知识点23:方程的根1.当m=时,分式方程会产生增根.A.1B.2C.-1D.22.分式方程的解为.A.x=-2或x=0B.x=-2C.x=0D.方程无实数根3.用换元法解方程,设=y,则原方程化为关于y的方程.A.y+2y-5=0B.y+2y-7=0C.y+2y-3=0D.y+2y-9=04.方程(a-1)x2+2ax+a2+5=0有一个根是x=-3,则a的值为A.-4B.1C.-4或1D.4或-15.关于x的方程有增根,则实数a为.A.a=1B.a=-1C.a=±1D.a=26.二次项系数为1的一元二次方程的两个根分别为--、-,则这个方程是A.x+2x-1=0B.x+2x+1=0C.x-2x-1=0D.x-2x+1=07.已知关于x的一元二次方程(k-3)x2-2kx+k+1=0有两个不相等的实数根,则k的取值范围是.A.k>-B.k>-且k≠3C.k<-D.k>且k≠3知识点24:求点的坐标1.已知点P的坐标为(2,2),PQ‖x轴,且PQ=2,则Q点的坐标是.(4,2)(0,2)或(4,2)(0,2)(2,0)或(2,4)2.假如点P到x轴的距离为3,到y轴的距离为4,且点P在第四象限内,则P点的坐标为.A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x轴的平行线l1,过点Q(-4,3)作y轴的平行线l2,l1、l2相交于点A,则点A的坐标是.(1,3)(-4,-2)(3,1)(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y1)、B(-,y2)、C(,y3)在反比例函数y=(k<0)的图象上,则下列各式中不对的的是.A.y3<y1<y2B.y2+y3<0C.y1+y3<0D.y1•y3•y2<02.y1<y2,则m的取值范围是.A.m>2B.m<2C.m<0D.m>03.已知:如图,过原点O的直线交反比例函数y=的图象于A、B两点,AC⊥x轴,AD⊥y轴,△ABC的面积为S,则.A.S=2B.2<S<4C.S=4D.S>44.已知x1,y1)、(x2,y2)在的图象上,①图象在第二、四象限;②y随x的增大而增大;③当0<x1<x2时,y1<y2;A.1个B.2个C.3个D.4个5.若反比例函数的图象与直线y=-x+2有两个不同的交点A、B,且∠AOB<90º,则k的取值范围必是.A.k>1B.k<1C.0<k<1D.k<06.若点(,)是反比例函数的图象上一点,则此函数图象与直线y=-x+b(|b|<2)的交点的个数为.A.0B.1C.2D.47.已知直线与双曲线交于A(x1,y1),B(x2,y2)两点,则x1·x2的值.A.与k有关,与b无关B.与k无关,与b有关C.与k、b都有关D.与k、b都无关知识点26:正多边形问题1..A.B.C.D.2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周边,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是.A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C.正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是.A.正三边形B.正四边形C.正六边形D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是.A.正四边形B.正六边形C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2023株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2×105B.6×105C.2.02×105D.6.06×1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2×108B.4.2×107C.4.2×106D.4.2×105知识点28:数据信息题1.对某班60名学生参与毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A.45B.51C.54D.572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,提成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中对的的说法是.A.①②B.②③C.①③D.①②③3.直方图所示.下列结论,其中对的的是.A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中对的的有.①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③A①②③B①②C②③D①③5.某校学生参与环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后提成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数.A.43B.44C.45D.486.对某班60名学生参与毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A45B51C54D577.某班学生一次数学测验成绩(成绩均为整数)进行记录分析,各分数段人数如图所示,下列结论,其中对的的有()①该班共有50人;②49.5—59.5这一组的频率为0.08;③本次测验分数的中位数在79.5—89.5这一组;④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④B.①②④C.②③④D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后,绘制了频率分布直方图(测试成绩保存一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五小组的频数为9,若规定测试成绩在2米以上(含2米)为合格,则下列①初三(1)班共有60名学生;②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%.A.①②③B.②③C.①③D.①②知识点29:增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增长了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中对的的是.A.①②B.①③C.②③D.①2.根据湖北省对外贸易局公布的数据:2023年我省全年对外贸易总额为16.3亿美元,较2023年对外贸易总额增长了10%,则2023年对外贸易总额为亿美元.A.B.C.D.3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增长了10个百分点,假如今年继续按此比例增长,那么今年110000初中毕业生,升入各类高中学生数应为.A.71500B.82500C.59400D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2023年涨价30%后,2023年降价70%后至78元,则这种药品在2023年涨价前的价格为元.78元B.100元C.156元D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是元.()A.700元B.800元C.850元D.1000元6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2023年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是元.A.44B.45C.46D.487.某商品的价格为a元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是元.A.a元B.1.08a元C.0.96a元D.0.972a元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是.A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价%,再降价%D.先涨价%,再降价%9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为.A.1600元B.3200元C.6400元D.8000元10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付钞票元.16360元B.16288C.16324元D.16000元知识点30:圆中的角1.已知:如图,⊙O1、⊙O2外切于点C,AB为外公切线,AC的延长线交⊙O1于点D,若AD=4AC,则∠ABC的度数为.A.15°B.30°C.45°D.60°2.已知:如图,PA、PB为⊙O的两条切线,A、B为切点,AD⊥PB于D点,AD交⊙O于点E,若∠DBE=25°,则∠P=.A.75°B.60°C.50°D.45°3.A.60°B.65°C.70°D.75°4.EBA、EDC是°,且AB=2ED,则∠E.A.30°B.35°C.45°D.755.已知:如图,Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径作⊙O与BC相切于点D,与AC相交于点E,若∠ABC=40°,则∠CDE=.A.40°B.20°C.25°D.30°6.已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130º,过D点的切线PD与直线AB交于P点,则∠ADP的度数为A.40ºB.45ºC.50ºD.65º7.°,则弧AB的度数为A.70°B.90°C.110°D.1308.已知:如图,⊙O1与⊙O2外切于点P,⊙O1的弦AB切⊙O2于C点,若∠APB=30º,则∠BPC=.A.60ºB.70ºC.75ºD.90º知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为米.(结果保存两位小数,≈1.4,≈1.7)A.8.66B.8.67C.10.67D.16.672.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为米.(≈1.4,≈1.7)A.31B.35C.39D.543.α,β,则sinα:sinβA.B.C.2D.44.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=2米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC为米.A.2米B.3米C.3.2米D.米5.已知△ABC中,BD平分∠ABC,DE⊥BC于E点,且DE:BD=1:2,DC:AD=3:4,CE=,BC=6,则△ABC的面积为.A.B.12C.24D.12知识点32:圆中的线段1.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连结AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为A.B.C.2D.32.已知:如图,⊙O1、⊙O2内切于点A,⊙O1的直径AB交⊙O2于点C,O1E⊥AB交⊙O2于F点,BC=9,EF=5,则CO1=A.9B.13C.14D.163.A.2:7B.2:5C.2:3D.1:34.A.2B.3C.4D.56.A.B.C.D.4.已知:如图,RtΔABC,∠C=90°,AC=4,BC=3,⊙O1内切于ΔABC,⊙O2切BC,且与AB、AC的延长线都相切,⊙O1的半径R1,⊙O2的半径为R2,则=.A.B.C.D.5.A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD为⊙O的直径,AC是⊙O的切线,AC=2,过A点的割线AEF交CD的延长线于B点,且AE=EF=FB,则⊙O的半径为.A.B.C.D.7.已知:如图,ABCD,过B、C、D三点作⊙O,⊙O切AB于B点,交AD于E点.若AB=4,CE=5,则DE的长为.A.2B.C.D.18.如图,⊙O1、⊙O2内切于P点,连心线和⊙O1、⊙O2分别交于A、B两点,过P点的直线与⊙O1、⊙O2分别交于C、D两点,若∠BPC=60º,AB=2,则CD=.A.1B.2C.D.知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱惜城市卫生”宣传活动,从学校骑车出发,先上坡到达A地,再下坡到达B地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B地返回学校时的平均速度为百米/分.B.C.D.2.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为升.A.15B.16C.17D.183.甲、乙两个个队完毕某项工程,一方面是甲单独做了10天,然后乙队加入合做,完毕剩下的所有工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完毕这项工程所用的时间比由甲单独完毕这项工程所需时间少.A.12天B.13天C.14天D.15天4.某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的与的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完所有油所需的时间是分钟.A.16分钟B.20分钟C.24分钟D.44分钟5.校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y是时间t的函数,则这个函数的大体图像只能是.ABCD6.如图,某航空公司托运营李的费用y(元)与托运营李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过公斤时,可以免费托运.A.18B.19C.20D.217.小明运用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,后走平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.若两天中,小明上坡、平路、下坡行驶的速度相对不变,则星期日,小明返回家的时间是分钟.30分钟B.38分钟C.41分钟D.43分钟8.有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进不出水,在随后的15分钟内既进水又出水,容器中的水量y(升)与时间t(分)之间的函数关系图像如图,若20分钟后只出水不进水,则需分钟可将容器内的水放完.A.20分钟B.25分钟C.分钟D.分钟9.由于自行车发生故障,停下修车耽误了几分钟.为了准时到校,这位学生加快了速度,仍保持匀速前进,结果准时到达学校,这位学生的自行车行进路程S(千米)与行进时间t(分钟)的函数关系如右图所示,则这位学生修车后速度加快了千米/分.A.5B.7.5C.10D.12.510.某工程队接受一项轻轨建筑任务,计划从2023年6月初至2023年5月底(12个月)完毕,施工3个月后,实行倒计时,提高工作效率,施工情况如图所示,那么按提高工作效率后的速度做完所有工程,可提前A.10.5个月B.6个月C.3个月D.1.5个月知识点34:二次函数图像与系数的关系1.如图,抛物线y=ax2+bx+c图象,则下列结论中:①abc>0;②2a+b<0;③a>;④c<1.其中对的的结论是.A.①②③B.①③④C.①②④D.②③④2.②;③a>;④b>1..A.①②B.②③C.③④D.②④3.是.①abc>0②a+b+c>0③c>a④2c>bA.①②③④B.①③④C.①②④D.①②③4.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在点(0,2)的上方.下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中对的结论的个数为.A1个B2个C3个D4个5.是.①abc>0②>-1③b<-1④5a-2b<0A.①②③④B.①③④C.①②④D.①②③6.其中对的的个数是. A.①④B.②③④C.①③④D.②③7.是.A.a>b>cB.a>c>bC.a>b=cD.a、b、c的大小关系不能拟定8.如图,抛物线y=ax2+bx+c图象与x轴交于A(x1,0)、B(x2,0)两点,则下列结论中:①2a+b<0;②a<-1;③a+b+c>0;④0<b2-4a<5a2.其中对的的结论有个.A.1个B.2个C.3个D.4个9.是.①b=2a②a-b+c>-1③0<b2-4ac<4④ac+1=bA.1个B.2个C.3个D.4个10..A.1个B.2个C.3个D.4个知识点35:多项选择问题已知:如图,△ABC中,∠A=60º,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E,连结DE、OE.下列结论:①BC=2DE;②D点到OE的距离不变;③BD+CE=2DE;④OE为△ADE外接圆的切线.其中对的的结论是.A.①②B.③④C.①②③D.①②④2.已知:如图,⊙O是△ABC的外接圆,AD⊥BC,CE⊥AB,D、E分别为垂足,AD交CE于H点,交⊙O于N,OM⊥BC,M为垂足,BO延长交⊙O于F点,下列结论:其中对的的有.①∠BAO=∠CAH;②DN=DH;③四边形AHCF为平行四边形;④CH•EH=OM•HN.A.①②③B.②③④C.①③④D.①②③④3.已知:如图,P为⊙O外一点,PA、PB切⊙O于A⊙O于点C,连结BO交延长分别交⊙O及切线PA于D下列结论:①AD∥PO;②ΔADE∽ΔPCB;③tan∠EAD=;④BD2=2AD•OP.其中对的的有.A.①②④B.③④C.①③④D.①④4.已知:如图,PA、PB为,交AB于E,AF为下列结论:①∠ABP=∠ABCF;③PC•PD=PE•PO;④∠OFE=∠OPF.其中对的的有.A.①②③④B.①②③C.①③④D.①②④5.已知:如图,∠ACB=90º,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,连OE交DC于P,则下列结论:其中对的的有.①BC=2DE;②OE∥AB;③DE=PD;④AC•DF=DE•CD.A.①②③B.①③④C.①②④D.①②③④6.已知:如图,M为⊙O上的一点,⊙M与⊙O相交于A、B两点,P为⊙O上任意一点,直线PA、PB分别交⊙M于C、D两点,直线CD交⊙O于E、F两点,连结PE、PF、BC,下列结论:其中对的的有.①PE=PF;②PE2=PA·PC;③EA·EB=EC·ED;④(其中R、r分别为⊙O、⊙M的半径).A.①②③B.①②④C.②④D.①②③④7.已知:如图,⊙O1、⊙O2相交于A、B两点,PA切⊙O1于A,交⊙O2于P,PB的延长线交⊙O1于C,CA的延长线交⊙O2于D,E为⊙O1上一点,AE=AC,EB延长线交⊙O2于F,连结AF、DF、PD,下列结论:①PA=PD∠CAE=∠APD;③;④AF2=PB•EF.其中对的的有.A.①②③B.②③④C.①③④D.①②③④8.已知:如图,P为两圆外公切线上的一点,的割线PBC切于D点,AD延长交于E点,连结AB、AC、O1D、O2E,下列结论:①PA=PD;③PD2=PB•PC;④O1D‖O2E.其中对的的有.A.①②④B.②③④C.①③④D.①②③④9.已知:如图,P为,PA切A点,CD⊥PA,D为垂足,CD交⊥BC于E,CM①AB=AF;③DF•DC=OE•PE;④PN=AN.其中对的的有.A.①②③④B.②③④C.①③④D.①②④10.其中对的的有.①CE=CF△APC∽△;③PC•PD=PA•PB;④DE为.A.①②③B.②③④C.①③④D.①②③④知识点36:因式分解1.分解因式:x2-x-4y2+2y=.2.分解因式:x3-xy2+2xy-x=.3.分解因式:x2-bx-a2+ab=.4.分解因式:x2-4y2-3x+6y=.5.分解因式:-x3-2x2-x+4xy2=.6.分解因式:9a2-4b2-6a+1=.7.分解因式:x2-ax-y2+ay=.8.分解因式:x3-y3-x2y+xy2=.9.分解因式:4a2-b2-4a+1=.知识点37:找规律问题1.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、……逐步增长时,楼梯的上法依次为:1,2,3,5,8,13,21,……(这就是著名的斐波拉契数列).请你仔细观测这列数的规律后回答:上10级台阶共有种上法.2.把若干个棱长为a的立方体摆成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体,摆三层共有10个立方体,那么摆五层共有个立方体.3.下面由“*”拼出的一列形如正方形的图案,每条边上(涉及两个顶点)有n(n>1)个“*”,每个图形“*”的总数是S:n=2,S=4n=3,S=8n=4,S=12n=5,S=16通过观测规律可以推断出:当n=8时,S=.4.下面由火柴杆拼出的一列图形中,第n个图形由n个正方形组成:……n=1n=2n=3n=4……通过观测发现:第n个图形中,火柴杆有根.5.已知P为△ABC的边BC上一点,△ABC的面积为a,B1、C1分别为AB、AC的中点,则△PB1C1的面积为,B2、C2分别为BB1、CC1的中点,则△PB2C2的面积为,B3、C3分别为B1B2、C1C2的中点,则△PB3C3的面积为,按此规律……可知:△PB5C5的面积为.6.如图,用火柴棒按平行四边形、等腰梯形间隔方式搭图形.按照这样的规律搭下去……若图形中平行四边形、等腰梯形共11个,需要根火柴棒.7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.根据图中的数构成的规律可得:图中a所表达的数是.8.在同一平面内:两条直线相交有个交点,三条直线两两相交最多有个交点,四条直线两两相交最多有个交点,……那么8条直线两两相交最多有个交点.9.观测下列等式根据前面各式规律可得:13+23+33+43+53+63+73+83=.知识点38:已知结论寻求条件问题1.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是.(只需填一个条件)2.已知:如图,AB为直径,P为AB延长线上的一点,PC切要使得AC=PC应满足的条件是.3.已知四边形ABCD内接于,过A作若它的边满足条件,则有ΔABP∽ΔCDA.4.已知:ΔABC中,D为BC上的一点,过A点的⊙O切BC于D点,交AB、AC于E、F两点,要使BC‖EF,则AD必满足条件.5.已知:如图,AB为⊙O的直径,D为弧AC上一点,DE⊥AB于E,DE、DB分别交弦AC于F、G两点,要使得DE=DG,则图中的弧必满足的条件是.6.已知:如图,Rt△ABC中,以AB为直径作⊙O交BC于D点,E为AC上一点,要使得AE=CE,请补充条件(填入一个即可).7.已知:如图,圆内接四边形ABCD,对角线ACBD相交于E点,•8.已知,ΔABC内接于OΔABC的边满足的是.9.已知:如图,ΔABC内接于⊙O,D为劣弧AB上一点,E是BC延长线上一点,AE交⊙O于F,为使ΔADB∽ΔACE,应补充的一个条件是,或.10.已知:如图,以△ABC的边AB为直径作,DE⊥AC,E为垂足,要使得DE为△ABC的边必满足的条件是.知识点39:阴影部分面积问题1.如图,梯形ABCD中,AD∥BC,∠D=90°,以AB为直径的⊙O切CD于E点,交BC于F,若AB=4cm,AD=1cm,则图中阴影部分的面积是cm2.(不用近似值)2.AB⊥AC,AE⊥BC,以AE为直径作以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=2,CE=6,则图中阴影部分的面积为.3.已知:如图,内含,直线于F点,若AC=1cm,则弧CF、AE与线段AC弧、EF弧围成的阴影部分cm2.4.已知:如图,AB为的直径,以为直径作MN与.5.已知:如图,等边△ABC内接于⊙O1,以AB为直径作⊙O2,AB=2,则图中阴影部分的面积为.6.已知:如图,边长为12的等边三角形,形内有4个等圆,则图中阴影部分的面积为.7.已知:如图,直角梯形ABCD中,ADBC=4,∠A=90°,以A为圆心,AB为半径作扇形ABD,以BC为直径作半圆,则图中阴影部分的面积为.8.AB⊥AC,AE⊥BC,以AE为直径作以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=6,CE=2,则图中阴影部分的面积为.9.已知:如图,⊙O的半径为1cm,AO交⊙O于C,AO=2cm,AB与⊙O相切于B点,弦CD‖AB,则图中阴影部分的面积是.10.已知:如图,以⊙O的半径OA为直径作⊙O1,O1B⊥OA交⊙O于B,OB交⊙O1于C,OA=4,则图中阴影部分的面积为.初中数学所有公式概念1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理通过直线外一点,有且只有一条直线与这条直线平行8假如两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的相应边、相应角相等22边角边公理有两边和它们的夹角相应相等的两个三角形全等23角边角公理有两角和它们的夹边相应相等的两个三角形全等24推论有两角和其中一角的对边相应相等的两个三角形全等25边边边公理有三边相应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边相应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的鉴定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2假如两个图形关于某直线对称,那么对称轴是相应点连线的垂直平分线44定理3两个图形关于某直线对称,假如它们的相应线段或延长线相交,那么交点在对称轴上45逆定理假如两个图形的相应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形鉴定定理1两组对角分别相等的四边形是平行四边形57平行四边形鉴定定理2两组对边分别相等的四边形是平行四边形58平行四边形鉴定定理3对角线互相平分的四边形是平行四边形59平行四边形鉴定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形鉴定定理1有三个角是直角的四边形是矩形63矩形鉴定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形鉴定定理1四边都相等的四边形是菱形68菱形鉴定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都通过对称中心,并且被对称中心平分73逆定理假如两个图形的相应点连线都通过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形鉴定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1通过梯形一腰的中点与底平行的直线,必平分另一腰80推论2通过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性质假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d84(2)合比性质假如a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质假如a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的相应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的相应线段成比例88定理假如一条直线截三角形的两边(或两边的延长线)所得的相应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边相应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形鉴定定理1两角相应相等,两三角形相似(ASA)92直角三角形被斜边上的高提成的两个直角三角形和原三角形相似93鉴定定理2两边相应成比例且夹角相等,两三角形相似(SAS)94鉴定定理3三边相应成比例,两三角形相似(SSS)95定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边相应成比例,那么这两个直角三角形相似96性质定理1相似三角形相应高的比,相应中线的比与相应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点拟定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线通过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所相应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的鉴定定理通过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于通过切点的半径124推论1通过圆心且垂直于切线的直线必通过切点125推论2通过切点且垂直于切线的直线必通过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点提成的两条线段长的积相等131推论假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134假如两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆提成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵通过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形提成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表达正n边形的周长142正三角形面积√3a/4a表达边长143假如在一个顶点周边有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)一、数正数:正数大于0负数:负数小于00既不是正数,也不是负数;正数大于负数整数涉及:正整数,0,负整数分数涉及:正分数,负分数有理数涉及:整数,分数/有限小数,无限循环小数数轴:在直线上取一点表达0(原点),选取单位长度,规定直线上向右的方向为正方向任何一个有理数(实数)都可以用数轴上的一个点表达,点和数是一一相应的两个数只有符号不同,其中一个数为另一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班美术详案教案及教学反思《树叶印画》
- 2023年中考物理一轮复习教案- 透镜和凸透镜成像规律
- 康复护理病例讨论制度
- 工厂消防安全制度建设
- 大班儿歌教案11篇
- 2022年建筑行业新材料应用方案
- 《因数中间或末尾有0的乘法》(教案)2023-2024学年数学四年级上册
- 叉车操作安全标准化方案
- 二年级上册数学教案-观察物体7 人教新课标
- PCR实验室消毒与清洁管理制度
- 《基坑支护》PPT课件.ppt
- 城市轨道交通线路选线设计-徐振廷
- 工程委外维保流程ppt课件
- 探究如何提高机电工程施工质量的方法
- 中建股份公司合同管理手册
- 仓库分区及状态标识
- 浅析微博营销对消费者购买行为的影响
- 超高层建筑电气设计要点分析
- 1到10套文章听力 (1)[教案教学]
- 全公安机关易制爆危险化学品安全监管要点暨检查记录表
- 关于集中式供水单位卫生监督管理情况汇报
评论
0/150
提交评论