版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各点中,在函数y=-图象上的是()A. B. C. D.2.下列几组数中,不能作为直角三角形三边长度的是()A.3,4,5 B.5,7,8 C.8,15,17 D.1,3.化简二次根式的结果为()A.﹣2a B.2a C.2a D.﹣2a4.六边形的内角和是()A.540°B.720°C.900°D.360°5.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.166.若二次根式有意义,则x的取值范围是()A. B. C. D.7.下列式子从左到右的变形一定正确的是()A. B. C. D.8.二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣29.若一个正多边形的一个外角是30°,则这个正多边形的边数是()A.9 B.10 C.11 D.1210.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣111.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或1412.若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是()A.y1<y2 B.y1>y2C.y1=y2 D.以上都有可能二、填空题(每题4分,共24分)13.计算=__________.14.在□ABCD中,∠A,∠B的度数之比为2:7,则∠C=__________.15.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________16.把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.17.□ABCD中,AB=6,BC=4,则□ABCD的周长是____________.18.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.三、解答题(共78分)19.(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?20.(8分)解方程:x2﹣6x+8=1.21.(8分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:票价种类
(A)学生夜场票
(B)学生日通票
(C)节假日通票
单价(元)
80
120
150
某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.(1)直接写出y与x之间的函数关系式;(2)设购票总费用为w元,求w(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.22.(10分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.23.(10分)已知m,n是实数,定义运算“*”为:m*n=mn+n.(1)分别求4*(﹣2)与4*的值;(2)若关于x的方程x*(a*x)=﹣有两个相等的实数根,求实数a的值.24.(10分)如图,已知四边形和四边形为正方形,点在线段上,点在同一直线上,连接,并延长交于点.(1)求证:.(2)若,,求线段的长.(3)设,,当点H是线段GC的中点时,则与满足什么样的关系式.25.(12分)某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是人;(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85①“95,100,82,90,89,90,90,85”这组数据的众数是,中位数是.②小聪同学的成绩是92分,他的成绩如何?③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?26.某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60751009075李同学70901008080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学807575190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
把各点代入解析式即可判断.【详解】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.【点睛】此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.2、B【解析】
根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.3、A【解析】
利用根式化简即可解答.【详解】解:∵﹣8a3≥0,∴a≤0∴=2|a|=﹣2a故选A.【点睛】本题考查二次根式性质与化简,熟悉掌握运算法则是解题关键.4、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.5、C【解析】试题解析:6、C【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【详解】∵二次根式有意义,∴,∴,故选:C.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.7、D【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.【详解】A.无法进行运算,故A项错误.B.当c=0时无法进行运算,故B项错误.C.无法进行运算,故C项错误.D.,故D项正确.故答案为:D【点睛】本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.8、D【解析】
根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.【详解】由题意,得2x+4≥0,解得x≥-2,故选D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.9、D【解析】
首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.【详解】根据题意正多边形的一个外角是30°它的内角为:所以根据正多边形的内角公式可得:可得故选D.【点睛】本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.10、B【解析】解:分式方程去分母得:2x-a=x+1,解得:x=a+1.根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.即字母a的取值范围为a>-1.故选B.点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.11、C【解析】解方程x2﹣7x+12=0,得,则等腰三角形的三边为4,4,6或3,3,6(舍去),易得等腰三角形的周长为4+4+6=14,故选C.12、A【解析】
结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.【详解】∵直线y=﹣x+n,﹣<0,∴y随x的增大而减小,∵3>﹣1,∴y1<y1.故选:A.【点睛】本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、【解析】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式==点睛:本题主要考查二次根式的加减,比较简单.14、40°【解析】分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.又∵∠A,∠B的度数之比为2:1,∴∠A=180°×=40°,∠B=180°×=140°,∴∠C=40°.故答案为:40°.点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.15、a>-1【解析】
一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,
当a+1>0时,即a>-1时,y随x的增大而增大.
故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.16、【解析】
抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即【点睛】本题主要考查了函数图像的平移规律,即“左右横,上下纵,正减负加”的理解和应用是解题的关键.17、1【解析】
根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得的周长为1.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC=4,∴的周长为1.故答案为1.【点睛】本题考查平行四边形的性质:平行四边形的对边相等.18、六【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.三、解答题(共78分)19、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理【解析】
分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.详解:(1)平均数:;中位数:240件;众数:240件.(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.20、x1=2x2=2.【解析】
应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.21、(1)y=93-4x;(2)w=-160x+14790;(3)共有3种购票方案,当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.【解析】试题分析:(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93-4x),然后整理即可;(3)根据题意得到,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.试题解析:解:(1)x+3x+7+y=100,所以y=93-4x;(2)w=80x+120(3x+7)+150(93-4x)=-160x+14790;(3)依题意得,解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=-160x+14790,因为k=-160<0,所以y随x的增大而减小,所以当x=22时,y最小=22×(-160)+14790=11270,即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.考点:1.一次函数的应用;2.一元一次不等式组的应用.22、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.23、(1);(2)a=1.【解析】
(1)利用新定义得到4*(﹣2)=4×(﹣2)+(﹣2);4*=4×+,然后进行实数运算即可;(2)利用新定义得到x(ax+x)+ax+x=﹣,整理得(a+1)x2+(a+1)x+=1,根据一元二次方程的定义和判别式的意义得到a+1≠1且△=(a+1)2﹣4(a+1)×=1,然后解关于a的方程即可.【详解】(1)4*(﹣2)=4×(﹣2)+(﹣2)=﹣8﹣2=﹣11;4*=4×+=5;(2)a*x=ax+x,由x*(ax+x)=﹣得x(ax+x)+ax+x=﹣,整理得(a+1)x2+(a+1)x+=1,因为关于x的方程(a+1)x2+(a+1)x+=1有两个相等的实数根,所以a+1≠1且△=(a+1)2﹣4(a+1)×=1,所以a=1.【点睛】本题考查了根的判别式,实数的运算,解题关键在于掌握运算法则.24、(1)见解析;(2);(3)().【解析】
(1)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC;(2)根据S△AGC=•AG•DC=•GC•AH,即可解决问题;(3)根据垂直平分线的性质可得结论.【详解】(1)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,∵∠HEC=∠DEA,∴∠EHC=∠EDA=90°,∴AH⊥GC;(2)∵AD=3,DE=1,∴GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.(3)由(1)得,AH即GC的中垂线∴AG=AC(中垂线的性质定理)∴()【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年七台河考货运上岗证试答题
- 南漳县丽美租房合同范例
- 模具工厂股合同范例
- 快手运营签约合同范例
- 居间协议合同范例武汉
- 代理法律服务合同范例
- 住房清包合同范例
- 生鲜订购合同范例
- 大宗物品合同范例
- 汇率套保合同范例
- 体育教育毕业论文范文8000字
- 危机管理手册
- 2023山东省科创集团限公司集团总部招聘1人上岸笔试历年难、易错点考题附带参考答案与详解
- 数学建模基础学习通超星课后章节答案期末考试题库2023年
- 屋面轻质混凝土找坡层技术交底
- 食品工程原理课程设计花生油换热器的设计
- 福利彩票机转让协议
- 中国常用汉字大全
- 农村留守儿童的营养状况及干预措施论文
- 水利工程建设汇报材料(通用3篇)
- 10篇罪犯矫治个案
评论
0/150
提交评论