版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,是斜边上的高,,那么等于()A. B. C. D.2.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.3.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是(
)A.ab>0 B.a﹣b>0 C.a2+b>0 D.a+b>04.已知x1,x2是方程的两个根,则的值为(
)A.1 B.-1 C.2 D.-25.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2 B.3 C.4 D.56.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.7.测试5位学生“一分钟跳绳”成绩,得到5个各不相同的数据.在统计时,出现了一处错误:将最高成绩120个写成了180个。以下统计量不受影响的是()A.方差 B.标准差 C.平均数 D.中位数8.如果三条线段a、b、c满足a2=(c+b)(c﹣b),那么这三条线段组成的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定9.如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是()A.22.5° B.30° C.45° D.67.5°10.如果点A(﹣2,a)在函数yx+3的图象上,那么a的值等于()A.﹣7 B.3 C.﹣1 D.4二、填空题(每小题3分,共24分)11.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是_________________米.12.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.13.数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___.14.面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.15.学校校园歌手大奖赛共有12位选手入围,按成绩取前6位进入决赛.如果王晓鸥同学知道了自己的成绩,要判断能否进入决赛,用数据分析的观点看,她还需要知道的数据是这12位同学的___.16.已知,则x等于_____.17.不等式组的解集为_____.18.如图,在四边形中,,,,,分别是,,,的中点,要使四边形是菱形,四边形还应满足的一个条件是______.三、解答题(共66分)19.(10分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,(1)点D的坐标为;(2)求四边形AOCD的面积;(3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.20.(6分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF,DC.求证:四边形ADCF是菱形.21.(6分)在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.22.(8分)勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架长的梯子斜靠在一竖直的墙上,这时为,如果梯子的顶端沿墙下滑,那么梯子底端向外移了多少米?(注意:)23.(8分)有下列命题①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)已知:.求证:.证明:24.(8分)(1)解不等式组:.(2)解方程:.25.(10分)在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.26.(10分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.【详解】解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD是高,
∴∠ADC=∠CDB=90°,
∴∠ACD+∠CAD=90°,
∴∠DCB=∠CAD,
∴△ADC∽△CDB,∴CD2=AD•BD,
∵AD=9,BD=4,∴CD=6故选:C.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.2、D【解析】
当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【详解】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选:D.【点睛】本题考查了反比例函数图象:反比例函数y=的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数图象.3、C【解析】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,,故C正确,a+b不一定大于0,故D错误.故选C.4、B【解析】
直接利用根与系数的关系可求得答案.【详解】∵x1、x2是方程的两个根,
∴x1+x2=-1,
故选:B.【点睛】此题考查根与系数的关系,掌握方程两根之和等于-是解题的关键.5、B【解析】
①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.【详解】∵点E、F都在反比例函数的图像上,∴,即,∵四边形是正方形,∴,∴∴,∴,①正确;∵∴,∵k的值不能确定,∴的值不能确定,②错误;∴只能确定为等腰三角形,不能确定为等边三角形,∴,,∴,,④错误;∵,∴,∴,③正确;作于点M,如图∵,为等腰直角三角形,,设,则,在中,,即,解得,∴,在正方形中,,∴,即为等腰直角三角形,∴,设正方形的边长为,则,在中,,即,解得∴,∴∴设直线的解析式为,过点则有解得故直线的解析式为;⑤正确;故正确序号为①③⑤,选.【点睛】本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.6、D【解析】
由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.7、D【解析】
根据方差,平均数,标准差和中位数的定义和计算方法可得答案.【详解】解:在方差和标准差的计算过程中都需要用到数据的平均数,C选项又是平均数,也就是说四个选项有三个跟平均数有关,而平均数的大小和每个数据都有关系,一旦某个数据改变了,平均数肯定会随之改变,而中位数是整组数据从小到大排列后取其中间的数(偶数个数据时取最中间2数的平均数)作为中位数,该事件中虽然最大数120变为180.但并不影响中间数的大小和位置,所以综上所述,不受影响的应该是中位数.故选:D.【点睛】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握各统计量的定义和计算方法.8、A【解析】
∵a2=(c+b)(cb),∴a2=c2﹣b2,即a2+b2=c2,∴这三条线段组成的三角形是直角三角形.故选A.【点睛】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.9、A【解析】
解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=∠ACB=22.5°.故选A.10、D【解析】
把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a(﹣2)+3=1.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.二、填空题(每小题3分,共24分)11、1.【解析】
在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:设旗杆高度为x,则,解得x=1.故答案为:1.【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.12、1【解析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【详解】设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:5x-2(20-x)≥60,解得:x≥14,∵x为整数,∴x的最小值为1.故答案是:1.【点睛】考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.13、0、1、1、2.4.【解析】
根据平均数、中位数、众数、方差的定义求解即可.【详解】平均数是:(1-3+1+0+1)÷5=0;中位数是:1;众数是:1;方差是:=2.4.故答案为:0;1;1;2.4【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.14、84分【解析】
根据加权平均数的计算公式进行计算,即可得出答案.【详解】根据题意得:90×20%+80×40%+85×40%=84(分);故答案为84分.【点睛】本题考查的是加权平均数,熟练掌握加权平均数的计算公式是解题的关键.15、中位数.【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故答案为中位数.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.16、2【解析】
先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x>0∵x+2+=10++3=10=2x=2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.17、1<x≤2【解析】
解:,解不等式①,得x>1.解不等式②,得x≤2,故不等式组的解集为1<x≤2.故答案为1<x≤2.18、【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半可得且,同理可得且,且,然后证明四边形是平行四边形,再根据邻边相等的平行四边形是菱形解答.【详解】解:还应满足.理由如下:,分别是,的中点,且,同理可得:且,且,且,四边形是平行四边形,,,即,是菱形.故答案是:.【点睛】本题考查了中点四边形,其中涉及到了菱形的判定,平行四边形的判定,三角形的中位线定理,根据三角形的中位线平行于第三边并且等于第三边的一半得到四边形的对边平行且相等从而判定出平行四边形是解题的关键,也是本题的突破口.三、解答题(共66分)19、(1)(-1,3);(2);(3)(-,0).【解析】
(1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;(2)根据面积公式求出面积即可;(3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.【详解】解:(1)把A(-3,0)代入y=x+m,得m=,∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),解方程组得:,∴D点坐标为(-1,3);故答案为(-1,3);(2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),∴四边形AOCD的面积=S△DAB-S△COB=×5×3-×2×2=;(3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,∵D点坐标为(-1,3),∴E点的坐标为(-1,-3),设直线CE的解析式为y=ax+b,把E、C的坐标代入得:解得:a=5,b=2,即直线CE的解析式为y=5x+2,当y=0时,x=-,即P点的坐标为(-,0).【点睛】本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.20、证明见解析.【解析】试题分析:先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE∥BC,证出AC⊥DF,即可得出结论.试题解析:证明:∵E是AC的中点,∴AE=CE.∵EF=DE,∴四边形ADCF是平行四边形.∵D、E分别是AB、AC的中点,∴DE∥BC.∴∠AED=∠ACB.∵∠ACB=90°,∴∠AED=90°,即AC⊥DF.∴□ADCF是菱形.21、S=.【解析】
如图,求出BC的长即可解决问题.【详解】解:如图,设等边三有形边长为,由勾股定理,得:,∴∴面积为:S=【点睛】本题考查等边三角形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、梯子底端向外移了0.77米.【解析】
先根据勾股定理求出的长,再根据梯子的长度不变求出的长,根据即可得出结论.【详解】在中,,,∴同理,在中,∵,,∴,∴.答:梯子底端向外移了0.77米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.23、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形【解析】
(1)根据平行线的判定定理写出真命题;(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.【详解】(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;②两组对角分别相等的四边形是平行四边形.故正确;③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.故答案是:①②④;(2)以②为例:已知:在四边形ABCD中,∠A=∠C,∠B=∠D,求证:四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人全日制劳动合同范本
- 电子书概述课件
- 感恩祖国演讲稿14篇
- 校园防金融诈骗
- 康复工作计划七篇
- 安全小卫士教课
- 信用管理培训
- 大学学期自我鉴定12篇
- “资产阶级改良派的早期探索为什么没有成功”教学设计(韩晓娟)
- 读《我的战友邱少云》有感
- 屋面轻质混凝土找坡层技术交底
- 部编版八年级历史上册《第18课从九一八事变到西安事变》说课稿
- 食品工程原理课程设计花生油换热器的设计
- 国开2023春计算机组网技术形考任务二参考答案
- 五年级上册英语人教PEP版课件书面表达
- PPT:增进民生福祉提高人民生活品质
- 开具红字发票情况说明
- 2022 年奥赛希望杯二年级培训 100题含答案
- 水利工程建设汇报材料(通用3篇)
- 10篇罪犯矫治个案
- 中央企业商业秘密安全保护技术指引2015版
评论
0/150
提交评论