2023届江苏省南通、扬州等七市高三新起点调研考试数学试题_第1页
2023届江苏省南通、扬州等七市高三新起点调研考试数学试题_第2页
2023届江苏省南通、扬州等七市高三新起点调研考试数学试题_第3页
2023届江苏省南通、扬州等七市高三新起点调研考试数学试题_第4页
2023届江苏省南通、扬州等七市高三新起点调研考试数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届江苏省南通、扬州等七市高三新起点调研考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知锐角满足则()A. B. C. D.2.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.43.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A. B. C. D.4.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直5.已知集合,,则()A. B. C. D.6.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.6747.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.8.已知集合,集合,则等于()A. B.C. D.9.在中,是的中点,,点在上且满足,则等于()A. B. C. D.10.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.11.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.12.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.14.在三棱锥P-ABC中,,,,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_________.15.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.16.命题“”的否定是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.18.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.19.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.21.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.22.(10分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.2、D【解析】

a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.3、D【解析】

如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知,翻折后,,,设外接圆的半径为,,,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为,,四面体的外接球的表面积为.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.4、D【解析】

根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.5、B【解析】

求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.6、B【解析】

由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7、C【解析】

根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.8、B【解析】

求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.9、B【解析】

由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.10、A【解析】

准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.11、A【解析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。12、C【解析】

在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】

求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【详解】由,得,,,,∵,∴,解得.故答案为:.【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.14、【解析】

先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用各个面的面积和乘以内切球半径等于三棱锥的体积的三倍即可解决.【详解】设顶点在底面上的射影为H,H是三角形ABC的内心,内切圆半径.三个侧面与底面所成的角均为,,,的高,,设内切球的半径为R,∴,内切球表面积.故答案为:.【点睛】本题考查三棱锥内切球的表面积问题,考查学生空间想象能力,本题解题关键是找到内切球的半径,是一道中档题.15、【解析】

取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.16、,【解析】

根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,.【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解析】试题分析:,所以.试题解析:B.因为,所以.18、(1)证明见解析(2)证明见解析【解析】

(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.19、(1)见解析;(2)【解析】

(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作交于,连接,设,连接,,,又为的角平分线,四边形为正方形,,又,,,,,又为的中点,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如图空间直角坐标系,则,,,,,,,设平面的一个法向量为,则,,令,得,设平面的一个法向量为,则,,令,得,由图示可知二面角是锐角,故二面角的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.20、(1).(2)为定值.过程见解析.【解析】分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可知,设,代入椭圆可得:,两式相减并整理可得,,即.又因为,,代入上式可得,.又,所以,故椭圆的方程为.(2)由题意可知,,当为长轴时,为短半轴,此时;否则,可设直线的方程为,联立,消可得,,则有:,所以设直线方程为,联立,根据对称性,不妨得,所以.故,综上所述,为定值.点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,,两式相减,结合斜率公式可得.21、(1);(2).【解析】

(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论