2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题_第1页
2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题_第2页
2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题_第3页
2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题_第4页
2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年陕西咸阳市高三第二学期期初模拟训练二数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(或)的图象大致是()A. B. C. D.2.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙3.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.4.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为85.在中,,则()A. B. C. D.6.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.7.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题8.如图,在平行四边形中,对角线与交于点,且,则()A. B.C. D.9.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B11.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.4012.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.14.平面区域的外接圆的方程是____________.15.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.16.已知函数在处的切线与直线平行,则为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.18.(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.(1)求椭圆的标准方程;(2)若,求点的坐标.19.(12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求B;(2)若的面积为,周长为8,求b.20.(12分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.21.(12分)设复数满足(为虚数单位),则的模为______.22.(10分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.2、A【解析】

利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.3、B【解析】

根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.4、D【解析】

由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.5、A【解析】

先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.6、D【解析】

首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7、D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.8、C【解析】

画出图形,以为基底将向量进行分解后可得结果.【详解】画出图形,如下图.选取为基底,则,∴.故选C.【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.9、D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.10、C【解析】试题分析:集合考点:集合间的关系11、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=4012、B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.14、【解析】

作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、、的值,即可得出所求圆的方程.【详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,,,因此,所求圆的方程为.故答案为:.【点睛】本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题.15、0.08【解析】

先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,.故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.16、【解析】

根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面,与均为正三角形,为的中点∴,,得平面,且由,∴而又为正三角形,得,得.∴,∴三棱锥的体积为.18、(1);(2)【解析】

(1)由题意得,求出,进而可得到椭圆的方程;(2)由(1)知点,坐标,设直线的方程为,易知,可得点的坐标为,联立方程,得到关于的一元二次方程,结合根与系数关系,可用表示的坐标,进而由三点共线,即,可用表示的坐标,再结合,可建立方程,从而求出的值,即可求得点的坐标.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知点,,由题意可设直线的斜率为,则,所以直线的方程为,则点的坐标为,联立方程,消去得:.设,则,所以,所以,所以.设点的坐标为,因为点三点共线,所以,即,所以,所以.因为,所以,即,所以,解得,又,所以符合题意,计算可得,,故点的坐标为.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查平行线的性质,考查学生的计算求解能力,属于难题.19、(1);(2)【解析】

(1)通过正弦定理和内角和定理化简,再通过二倍角公式即可求出;(2)通过三角形面积公式和三角形的周长为8,求出b的表达式后即可求出b的值.【详解】(1)由三角形内角和定理及诱导公式,得,结合正弦定理,得,由及二倍角公式,得,即,故;(2)由题设,得,从而,由余弦定理,得,即,又,所以,解得.【点睛】本题综合考查了正余弦定理,倍角公式,三角形面积公式,属于基础题.20、(1)见解析;(2)【解析】

(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.21、1【解析】

整理已知利用复数的除法运算方式计算,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论