版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
------------------------------------------------------------------------高一数学集合、函数知识点总结、相应试题及答案第一章集合与函数概念一、集合有关概念集合的含义集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR|x-3>2},{x|x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AÍA②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)③如果AÍB,BÍC,那么AÍC④如果AÍB同时BÍA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即SACSA=韦恩图示SSA性质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.4.设集合A=,B=,若AB,则的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值(1)已知A={x|-3<x<5},B={x|x<a},若满足AÍB,则实数a的取值范围是;(2)已知集合A={x|x2+x-6=0},集合B={y|ay+1=0},若满足BÍA,则实数a所能取的一切值为.(3)已知集合,≥,且满足,求实数的取值范围。二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法描点法:图象变换法常用变换方法有三种平移变换伸缩变换对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:eq\o\ac(○,1)任取x1,x2∈D,且x1<x2;eq\o\ac(○,2)作差f(x1)-f(x2);eq\o\ac(○,3)变形(通常是因式分解和配方);eq\o\ac(○,4)定号(即判断差f(x1)-f(x2)的正负);eq\o\ac(○,5)下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:eq\o\ac(○,1)首先确定函数的定义域,并判断其是否关于原点对称;eq\o\ac(○,2)确定f(-x)与f(x)的关系;eq\o\ac(○,3)作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法待定系数法换元法消参法10.函数最大(小)值(定义见课本p36页)eq\o\ac(○,1)利用二次函数的性质(配方法)求函数的最大(小)值eq\o\ac(○,2)利用图象求函数的最大(小)值eq\o\ac(○,3)利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴⑵2.设函数的定义域为,则函数的定义域为__3.若函数的定义域为,则函数的定义域是4.函数,若,则=5.求下列函数的值域:⑴⑵(3)(4)6.已知函数,求函数,的解析式7.已知函数满足,则=。8.设是R上的奇函数,且当时,,则当时=在R上的解析式为9.求下列函数的单调区间:⑴⑵⑶10.判断函数的单调性并证明你的结论.11.设函数判断它的奇偶性并且求证:.(数学1必修)第一章(上)集合[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于的数C.接近于的数D.不等于的偶数2.下列四个集合中,是空集的是()A.B.C.D.ABC3.下列表示图形中的阴影部分的是(ABCA.B.C.D.4.下面有四个命题:(1)集合中最小的数是;(2)若不属于,则属于;(3)若则的最小值为;(4)的解可表示为;其中正确命题的个数为()A.个B.个C.个D.个5.若集合中的元素是△的三边长,则△一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集,则集合的真子集共有()A.个B.个C.个D.个二、填空题1.用符号“”或“”填空(1)______,______,______(2)(是个无理数)(3)________2.若集合,,,则的非空子集的个数为。3.若集合,,则_____________.4.设集合,,且,则实数的取值范围是。5.已知,则_________。三、解答题1.已知集合,试用列举法表示集合。2.已知,,,求的取值范围。3.已知集合,若,求实数的值。4.设全集,,(数学1必修)第一章(上)集合[综合训练B组]一、选择题1.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合与集合是同一个集合;(3)这些数组成的集合有个元素;(4)集合是指第二和第四象限内的点集。A.个B.个C.个D.个2.若集合,,且,则的值为()A.B.C.或D.或或3.若集合,则有()A.B.C.D.4.方程组的解集是()A.B.C.D.。5.下列式子中,正确的是()A.B.C.空集是任何集合的真子集D.6.下列表述中错误的是()A.若B.若C.D.二、填空题1.用适当的符号填空(1)(2),(3)2.设则。3.某班有学生人,其中体育爱好者人,音乐爱好者人,还有人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人。4.若且,则。5.已知集合至多有一个元素,则的取值范围;若至少有一个元素,则的取值范围。三、解答题1.设2.设,其中,如果,求实数的取值范围。3.集合,,满足,求实数的值。4.设,集合,;若,求的值。(数学1必修)第一章(上)集合[提高训练C组]一、选择题1.若集合,下列关系式中成立的为()A.B.C.D.2.名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格人和人,项测验成绩均不及格的有人,项测验成绩都及格的人数是()A.B.C.D.3.已知集合则实数的取值范围是()A.B.C.D.4.下列说法中,正确的是()任何一个集合必有两个子集;若则中至少有一个为任何集合必有一个真子集;若为全集,且则5.若为全集,下面三个命题中真命题的个数是()(1)若(2)若(3)若A.个B.个C.个D.个6.设集合,,则()A.B.C.D.7.设集合,则集合()A.B.C.D.二、填空题1.已知,则。2.用列举法表示集合:=。3.若,则=。4.设集合则。5.设全集,集合,,那么等于________________。三、解答题1.若2.已知集合,,,且,求的取值范围。3.全集,,如果则这样的实数是否存在?若存在,求出;若不存在,请说明理由。4.设集合求集合的所有非空子集元素和的和。(数学1必修)第一章(中)函数及其表示[基础训练A组]一、选择题1.判断下列各组中的两个函数是同一函数的为()⑴,;⑵,;⑶,;⑷,;⑸,。A.⑴、⑵B.⑵、⑶C.⑷D.⑶、⑸2.函数的图象与直线的公共点数目是()A.B.C.或D.或3.已知集合,且使中元素和中的元素对应,则的值分别为()A.B.C.D.4.已知,若,则的值是()A.B.或C.,或D.5.为了得到函数的图象,可以把函数的图象适当平移,这个平移是()A.沿轴向右平移个单位B.沿轴向右平移个单位C.沿轴向左平移个单位D.沿轴向左平移个单位6.设则的值为()A.B.C.D.二、填空题1.设函数则实数的取值范围是。2.函数的定义域。3.若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是。4.函数的定义域是_____________________。5.函数的最小值是_________________。三、解答题1.求函数的定义域。2.求函数的值域。3.是关于的一元二次方程的两个实根,又,求的解析式及此函数的定义域。4.已知函数在有最大值和最小值,求、的值。(数学1必修)第一章(中)函数及其表示[综合训练B组]一、选择题1.设函数,则的表达式是()A.B.C.D.2.函数满足则常数等于()A.B.C.D.3.已知,那么等于()A.B.C.D.4.已知函数定义域是,则的定义域是()A.B.C.D.5.函数的值域是()A.B.C.D.6.已知,则的解析式为()A.B.C.D.二、填空题1.若函数,则=.2.若函数,则=.3.函数的值域是。4.已知,则不等式的解集是。5.设函数,当时,的值有正有负,则实数的范围。三、解答题1.设是方程的两实根,当为何值时,有最小值?求出这个最小值.2.求下列函数的定义域(1)(2)(3)3.求下列函数的值域(1)(2)(3)4.作出函数的图象。函数及其表示[提高训练C组]一、选择题1.若集合,,则是()A.B.C.D.有限集2.已知函数的图象关于直线对称,且当时,有则当时,的解析式为()A.B.C.D.3.函数的图象是()4.若函数的定义域为,值域为,则的取值范围是()A.B.C.D.5.若函数,则对任意实数,下列不等式总成立的是()A.B.C.D.6.函数的值域是()A.B.C.D.二、填空题1.函数的定义域为,值域为,则满足条件的实数组成的集合是。2.设函数的定义域为,则函数的定义域为__________。3.当时,函数取得最小值。4.二次函数的图象经过三点,则这个二次函数的解析式为。5.已知函数,若,则。三、解答题1.求函数的值域。2.利用判别式方法求函数的值域。3.已知为常数,若则求的值。4.对于任意实数,函数恒为正值,求的取值范围。(数学1必修)第一章(下)函数的基本性质[基础训练A组]一、选择题1.已知函数为偶函数,则的值是()A.B.C.D.2.若偶函数在上是增函数,则下列关系式中成立的是()A.B.C.D.3.如果奇函数在区间上是增函数且最大值为,那么在区间上是()A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是4.设是定义在上的一个函数,则函数在上一定是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数。5.下列函数中,在区间上是增函数的是()A.B.C.D.6.函数是()A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数二、填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是2.函数的值域是________________。3.已知,则函数的值域是.4.若函数是偶函数,则的递减区间是.5.下列四个命题(1)有意义;(2)函数是其定义域到值域的映射;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是____________。三、解答题1.判断一次函数反比例函数,二次函数的单调性。2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围。3.利用函数的单调性求函数的值域;4.已知函数.①当时,求函数的最大值和最小值;②求实数的取值范围,使在区间上是单调函数。(数学1必修)第一章(下)函数的基本性质[综合训练B组]一、选择题1.下列判断正确的是()A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数2.若函数在上是单调函数,则的取值范围是()A.B.C.D.3.函数的值域为()A.B.C.D.4.已知函数在区间上是减函数,则实数的取值范围是()A.B.C.D.5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3)的递增区间为;(4)和表示相等函数。其中正确命题的个数是()A.B.C.D.dd0t0dd0t0tOA.dd0t0tOB.dd0t0tOC.dd0t0tOD.二、填空题1.函数的单调递减区间是____________________。2.已知定义在上的奇函数,当时,,那么时,.3.若函数在上是奇函数,则的解析式为________.4.奇函数在区间上是增函数,在区间上的最大值为,最小值为,则__________。5.若函数在上是减函数,则的取值范围为__________。三、解答题1.判断下列函数的奇偶性(1)(2)2.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数。3.设函数与的定义域是且,是偶函数,是奇函数,且,求和的解析式.4.设为实数,函数,(1)讨论的奇偶性;(2)求的最小值。(数学1必修)第一章(下)函数的基本性质[提高训练C组]一、选择题1.已知函数,,则的奇偶性依次为()A.偶函数,奇函数B.奇函数,偶函数C.偶函数,偶函数D.奇函数,奇函数2.若是偶函数,其定义域为,且在上是减函数,则的大小关系是()A.>B.<C.D.3.已知在区间上是增函数,则的范围是()A.B.C.D.4.设是奇函数,且在内是增函数,又,则的解集是()A.B.C.D.5.已知其中为常数,若,则的值等于()A.B.C.D.6.函数,则下列坐标表示的点一定在函数f(x)图象上的是()A.B.C.D.二、填空题1.设是上的奇函数,且当时,,则当时_____________________。2.若函数在上为增函数,则实数的取值范围是。3.已知,那么=_____。4.若在区间上是增函数,则的取值范围是。5.函数的值域为____________。三、解答题1.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式。2.当时,求函数的最小值。3.已知在区间内有一最大值,求的值.4.已知函数的最大值不大于,又当,求的值。(数学1必修)第一章(上)[提高训练C组]一、选择题1.DB全班分类人:设两项测验成绩都及格的人数为人;仅跳远及格的人数为人;仅铅球及格的人数为人;既不爱好体育又不爱好音乐的人数为人。∴,∴。3.C由,∴;4.D选项A:仅有一个子集,选项B:仅说明集合无公共元素,选项C:无真子集,选项D的证明:∵,∴;同理,∴;5.D(1);(2);(3)证明:∵,∴;同理,∴;6.B;,整数的范围大于奇数的范围7.B二、填空题2.(的约数)3.,4.5.,代表直线上,但是挖掉点,代表直线外,但是包含点;代表直线外,代表直线上,∴。三、解答题解:,∴解:,当时,,而则这是矛盾的;当时,,而,则;当时,,而,则;∴解:由得,即,,∴,∴解:含有的子集有个;含有的子集有个;含有的子集有个;…,含有的子集有个,∴。(数学1必修)第一章(中)[提高训练C组]一、选择题1.B2.D设,则,而图象关于对称,得,所以。3.D4.C作出图象的移动必须使图象到达最低点5.A作出图象图象分三种:直线型,例如一次函数的图象:向上弯曲型,例如二次函数的图象;向下弯曲型,例如二次函数的图象;6.C作出图象也可以分段求出部分值域,再合并,即求并集二、填空题当当2.3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人医疗贷款合同
- 空调系统故障维修合同
- 2024年物流公司转让合同范本
- 湖南省七年级上学期语文期中试卷9套【附答案】
- 业主/咨询工程师标准服务协议书样本
- 2024自己和单位签的劳动合同自己没有保留
- 2024家具买卖的合同模板
- 无财产分割离婚协议书2024年模板
- 2024年购销青年鸡合同范本
- 国际技术引进代理合同专业版
- 四川省特种车辆警报器和标志灯具申请表
- 20200310公园安全风险辨识清单
- 华中科技大学官方信纸
- 60立方油罐容积细表
- WI-QA-02-034A0 灯具成品检验标准
- 农业信息技术 chapter5 地理信息系统
- 部编版六年级上语文阅读技巧及解答
- 斯派克max操作手册
- 项目四 三人表决器ppt课件
- 结合子的机械加工工艺规程及铣槽的夹具设计
- 林武樟 完整阳宅讲义 笔记版[方案]
评论
0/150
提交评论