版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于中心对称与中心对称图形第1页,课件共27页,创作于2023年2月复习1、旋转的概念;2、旋转的决定因素;3、旋转的性质。(1)旋转中心(2)旋转方向(3)旋转角度◆旋转前、后的图形全等.◆对应点到旋转中心的距离相等.
◆每一对对应点与旋转中心所连线段的夹角等于旋转角.
第2页,课件共27页,创作于2023年2月(1)把其中一个图案绕点O旋转180°,你有什么发现?观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?OCB(2)重合重合第3页,课件共27页,创作于2023年2月如果把一个图形绕着某个点旋转180°,能够与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.归纳定义CB△OCD和△OAB关于
对称,对称点是
.第4页,课件共27页,创作于2023年2月
旋转三角板,画关于点O对称的两个三角形:
第一步画出△ABC;
第二步以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′
;
第三步移开三角板.探究第5页,课件共27页,创作于2023年2月
这样画出的△ABC与△A′B′C′关于点O对称.分别连接对称点AA′、BB′、CC′.点O在线段AA
′上吗?如果在,在什么位置?△ABC与△A′
B′C′有什么关系?你能从中得到什么结论?AA’BB’CC’O第6页,课件共27页,创作于2023年2月(2)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(1)关于中心对称的两个图形是全等形;归纳性质第7页,课件共27页,创作于2023年2月中心对称与轴对称有什么区别?又有什么联系?第8页,课件共27页,创作于2023年2月
(1)如图,选择点O为对称中心,画出点A关于点O的对称点A′;AOA′点A′即为所求的点.应用画法:连接AO并延长到A′,使OA′=OA,得到点A的对称点A′.第9页,课件共27页,创作于2023年2月
(2)如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.A’C’B’△A′B′C′即为所求的三角形.应用1.连接AO并延长到A′,使OA′=OA,得到点A
的对称点A′.2.同样画B、C的对称点B′、
C′.
3.顺次连接A′、B′、C′
各点.画法:第10页,课件共27页,创作于2023年2月A′B′C′OABC1.如图,已知等边△ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称.巩固练习第11页,课件共27页,创作于2023年2月DABCO.2.画一个与已知四边形ABCD成中心对称的图形.(1)以顶点A为对称中心;(2)以BC边的中点为对称中心.DABCEFGMN巩固练习第12页,课件共27页,创作于2023年2月3.如图,已知△ABC与△A′B′C′中心对称,求出它们的对称中心O.ABCA′B′C′巩固练习第13页,课件共27页,创作于2023年2月解法一:根据观察,B、B′应是对应点,连结
BB′,用刻度尺找出BB′的中点O,则点O即为所求(如图)ABCA′B′C′O巩固练习第14页,课件共27页,创作于2023年2月O解法二:根据观察,B、B′及C、C′应分别是两组对应点,连结BB′
、CC′
,它们相交于点O,则点O即为所求(如图).ABCA′B′C′巩固练习第15页,课件共27页,创作于2023年2月o(2)圆(4)正方形(1)线段(3)平行四边形AB观察
将下面的图形绕O点旋转180°,你有什么发现?OOO第16页,课件共27页,创作于2023年2月
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.ABCDO概念第17页,课件共27页,创作于2023年2月
中心对称与中心对称图形是两个既有联系又有区别的概念.区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系:如果将中心对称图形的两个图形看成一个整体,
则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图形,
则它们成中心对称.比较第18页,课件共27页,创作于2023年2月
问题:我们平时见过的几何图形中,有哪些是中心对称图形?并指出对称中心.探究怎样的正多边形是中心对称图形?第19页,课件共27页,创作于2023年2月轴对称图形与中心对称图形的比较第20页,课件共27页,创作于2023年2月
在生活中你还见过哪些中心对称图形?H想一想0第21页,课件共27页,创作于2023年2月回H填一填第22页,课件共27页,创作于2023年2月1.下列图形中既是轴对称图形又是中心对称图形的是().A、角B、等边三角形
C、线段D、平行四边形C巩固练习2.下列多边形中,是中心对称图形而不是轴对称图形的是().A、平行四边形B、矩形
C、菱形D、正方形A第23页,课件共27页,创作于2023年2月
3.已知:下列命题中真命题的个数是().①关于中心对称的两个图形一定不全等②关于中心对称的两个图形是全等形③两个全等的图形一定关于中心对称
A、0B、1C、2D、3B巩固练习第24页,课件共27页,创作于2023年2月
4.如图,在平行四边形ABCD中,AC与BD交于点O,过点O的两条直线,分别交各边于点E、H、F、G,
则A、E、D、G关于O的对称点分别是点
、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《索具套环》规范
- 安全专业软件相关行业投资规划报告
- 非离子型纤维素醚相关行业投资规划报告
- 两家宅基地界线协议书
- 顺行髓内钉治疗掌骨颈骨折
- 灯光培训资料
- 智慧医院综合管理解决方案(医院综合管控指挥)
- 食品中毒应急预案
- 老年病科急救演练
- 药店药师的角色与职责
- 海洋科学专业职业生涯规划书
- 现代物流技术的应用与创新
- 《配电网供电可靠性》课件
- 眼角膜炎的治疗药物
- 利用人工智能促进中小学教师专业发展
- 药店医保服务管理制度
- 新能源与航空航天技术的结合
- 中国银行交易流水明细清单
- 通勤车租赁投标方案(技术标)
- 如何提高数学课堂的教学效率
- 第九章德国新闻事业史(一)九章德国新闻事业史(一)第九章德国新闻事业史(一)第九章德国新闻事业史(一)
评论
0/150
提交评论