




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4角平分线第一章三角形的证明
优
翼
课
件
导入新课讲授新课当堂练习课堂小结
八年级数学下(BS)教学课件第1课时角平分线1.会叙述角平分线的性质及判定;(重点)2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;(难点)3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.学习目标情境引入如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?(比例尺为1︰20000)DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O导入新课1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜想线段PD与PE的大小关系,写出结:__________
PDPE第一次第二次第三次
COBAPD=PEpDE实验:OC是∠AOB的平分线,点P是射线OC上的
任意一点猜想:角的平分线上的点到角的两边的距离相等.角平分线的性质一讲授新课验证猜想已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO
≌△PEO(AAS).∴PD=PE.角的平分线上的点到角的两边的距离相等
性质定理:
角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:
证明线段相等.应用格式:∵OP
是∠AOB的平分线,∴PD=PE(角的平分线上的点到这个角的两边的距离相等).推理的理由有三个,必须写完全,不能少了任何一个.知识要点PD⊥OA,PE⊥OB,BADOPEC判一判:(1)∵如下左图,AD平分∠BAC,(已知)∴
=
;()角的平分线上的点到这个角的两边的距离相等BDCD×BADC(2)∵
如上右图,DC⊥AC,DB⊥AB
,(已知)∴
=
,
()角的平分线上的点到这个角的两边的距离相等BDCD×BADC例1:已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.ABCDEF证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴
DE=DF,∠DEB=∠DFC=90°.在Rt△BDE
和Rt△CDF中,DE=DF,BD=CD,∴Rt△BDE
≌Rt△CDF(HL).∴EB=FC.角平分线的判定二PAOBCDE角的内部到角的两边距离相等的点在角的平分线上.思考:交换角的平分线性质中的已知和结论,你能得到什么结论,这个新结论正确吗?角平分线的性质:角的平分线上的点到角的两边的距离相等.思考:这个结论正确吗?逆命题已知:如图,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=PE.求证:点P在∠AOB的平分线上.证明:作射线OP,
∴点P在∠AOB
的平分线上.在Rt△PDO和Rt△PEO
中,(全等三角形的对应角相等).
OP=OP(公共边),PD=PE(已知),BADOPE∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP证明猜想判定定理:角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.知识总结推理时注意结合图形确定点在角的内部.例2:如图,在△ABC中,∠ABC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长.解:
∵DE⊥AB,DF⊥AC,DE=DF,∴AD是∠BAC的平分线.又∵∠ABC=60°,∴∠BAD=30°.在Rt△ADE中,AD=10,∠BAD=30°,∴BE=AD=5.例3:如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC,∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.
GHMABCFED┑┑┑例4如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划在∠AOB内修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)ONMABONMAB方法总结:角的内部到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.解:如图所示:P归纳总结图形已知条件结论PCPCOP平分∠AOBPD⊥OA于DPE⊥OB于EPD=PEOP平分∠AOBPD=PEPD⊥OA于DPE⊥OB于E角的平分线的判定角的平分线的性质当堂练习2.△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是
.ABCD3E1.如图,DE⊥AB,DF⊥BG,垂足分别是E,F,DE=DF,∠EDB=67.5°,则∠EBF=
度,BE=
.45BFEBDFACG3.已知用三角尺可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB.为什么?AOBMNP解:在Rt△MOP和Rt△NOP中,
OM=ON,
OP=OP,∴Rt△MOP≌Rt△NOP(HL).∴∠MOP=∠NOP,即OP平分∠AOB.1.应用角平分线性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北幼儿师范高等专科学校《生物技术与工程专题》2023-2024学年第二学期期末试卷
- 贵州电子商务职业技术学院《轧制工艺学板带材生产》2023-2024学年第二学期期末试卷
- 人教版数学六年级下册《正比例和反比例》同步测试题含答案
- 护理工作首问负责制度
- 江西泰豪动漫职业学院《仪器分析综合实训》2023-2024学年第二学期期末试卷
- 江西洪州职业学院《精准农业》2023-2024学年第二学期期末试卷
- 江苏省清江市清江中学2024-2025学年高三高考保温金卷物理试题试卷含解析
- 长沙理工大学城南学院《人事测评技术实训》2023-2024学年第二学期期末试卷
- 2025年西藏拉萨达孜县重点中学初三第一次教学质量检查考试化学试题含解析
- 河北旅游职业学院《高级机器学习》2023-2024学年第二学期期末试卷
- 钢筋混凝土排水管一级管配筋设计图册
- 施工现场质量安全生产管理体系报审表表
- 新版药品经营质量管理规范应知应会
- DISC性格测试(完全版)
- 初一下册生物期中考试复习提纲
- APQP培训-经典案例(完整版)
- 最全的L13J1建筑工程做法(共170页)
- 政策执行地路径
- 钢筋混凝土检查井技术交底
- 解读电影《末路狂花》中的女性主义
- 十二宫卦数注解
评论
0/150
提交评论