2023年林芝数学八年级第二学期期末综合测试试题含解析_第1页
2023年林芝数学八年级第二学期期末综合测试试题含解析_第2页
2023年林芝数学八年级第二学期期末综合测试试题含解析_第3页
2023年林芝数学八年级第二学期期末综合测试试题含解析_第4页
2023年林芝数学八年级第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A.4 B.8 C.12 D.162.在平面直角坐标系中,点P(-3,4)关于y轴对称点的坐标为()A.(-3,4)B.(3,4)C.(3,-4)D.(-3,-4)3.正方形ABCD中,点E、F分别在CD、BC边上,是等边三角形.以下结论:①;②;③;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2 C.3 D.44.下列条件中能构成直角三角形的是().A.2、3、4 B.3、4、5 C.4、5、6 D.5、6、75.如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(1,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)6.如图是反比例函数和在第一象限的图象,直线轴,并分别交两条曲线于两点,若,则的值是()A.1 B.2 C.4 D.87.如图,在中,平分,,则的周长为()A.4 B.6 C.8 D.128.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC9.如图所示,一次函数y1=kx+4与y2=x+b的图象交于点A.则下列结论中错误的是()A.K<0,b>0 B.2k+4=2+bC.y1=kx+4的图象与y轴交于点(0,4) D.当x<2时,y1>y210.在中,斜边,则A.10 B.20 C.50 D.100二、填空题(每小题3分,共24分)11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.12.如图,菱形的对角线相交于点,若,则菱形的面积=____.13.如果多边形的每个内角都等于,则它的边数为______.14.在方程组中,已知,,则a的取值范围是______.15.如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____16.已知直线不经过第一象限,则的取值范围是_____________。17.计算=_____,(﹣)2=_____,3﹣=_____.18.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.三、解答题(共66分)19.(10分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?20.(6分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.(1)求证:;(2)求的度数(3)若,求的值.21.(6分)先化简再求值:,然后在的范围内选取一个合适的整数作为x的值并代入求值.22.(8分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.23.(8分)如图,已知,,,四点在同一条直线上,,,且.(1)求证:.(2)如果四边形是菱形,已知,,,求的长度.24.(8分)垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、内三个运动员十次垫球测试的成绩,规则为每次测试连续垫球10个,每垫球到位1个记1分.测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、s丙2=0.81)25.(10分)已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1.x2.(1)求实数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.26.(10分)在正方形中,点是对角线上的两点,且满足,连接.试判断四边形的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

解:∵菱形ABCD中,E,F分别是AB,AC的中点,EF=2,∴BC=2EF=2×2=1.即AB=BC=CD=AD=1.故菱形的周长为1BC=1×1=2.故答案为2.【点睛】本题考查三角形中位线定理;菱形的性质.2、B【解析】试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).故选B.3、C【解析】

由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【详解】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=∠AEF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE,∴BF=DE,∴BC−BF=CD−DE,∴CE=CF,故①正确;∵CE=CF,∠C=90°;∴EF=CE,∠CEF=45°;∴AF=CE,∴CF=AF,故③错误;∵∠AED=180°−∠CEF−∠AEF;∴∠AED=75°;故②正确;∵AE=AF,CE=CF;∴AC垂直平分EF;故④正确.故选:C.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定是解决本题的关键.4、B【解析】

根据勾股定理逆定理进行计算判断即可.【详解】A.,故不能构成直角三角形;B.,故能构成直角三角形;C.,故不能构成直角三角形;D.,故不能构成直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.5、C【解析】

根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.【详解】解:因为点D(5,3)在边AB上,

所以AB=BC=5,BD=5-3=2;

(1)若把△CDB顺时针旋转90°,

则点D′在x轴上,OD′=2,

所以D′(-2,0);

(2)若把△CDB逆时针旋转90°,

则点D′到x轴的距离为10,到y轴的距离为2,

所以D′(2,10),

综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).

故选C.【点睛】本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.6、D【解析】

根据题意,由轴,设点B(a,b),点A为(m,n),则,,由,根据反比例函数的几何意义,即可求出的值.【详解】解:如图是反比例函数和在第一象限的图象,∵直线轴,设点B(a,b),点A为(m,n),∴,,∵,∴,∴;故选:D.【点睛】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7、C【解析】

在平行四边形ABCD中,AC平分∠DAB,则四边形ABCD为菱形,根据菱形的性质求周长.【详解】解:∵在中,平分,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=1.故选C.【点睛】本题考查了菱形的判定定理,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形,④对角线平分一组对角的平行四边形是菱形.8、C【解析】

通过构造相似三角形即可解答.【详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确,CM=AC,D正确.即AB=2MN=36,A正确;MN=AB,C错误.故本题选C.【点睛】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.9、A【解析】

利用一次函数的性质结合函数的图象逐项分析后即可确定正确的选项.【详解】解:∵y1=kx+4在第一、二、四象限,y2=x+b的图象交于y轴的负半轴,∴k<0,b<0故A错误;∵A点为两直线的交点,∴2k+4=2+b,故B正确;当x=0时y1=kx+4=4,∴y1=kx+4的图象与y轴交于点(0,4),故C正确;由函数图象可知当x<2时,直线y2的图象在y1的下方,∴y1>y2,故D正确;故选:A.【点睛】本题考查两直线的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.10、D【解析】

根据勾股定理计算即可.【详解】在中,,,故选:D.【点睛】本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.二、填空题(每小题3分,共24分)11、1【解析】

首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.3,a,2b,5与a,1,b的平均数都是1.【详解】解:∵两组数据:3,a,2b,5与a,1,b的平均数都是1,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,一共7个数,中间的数是1,所以中位数是1.故答案为1.12、3.【解析】

先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.【详解】因为四边形ABCD是菱形,所以AC⊥BD.在Rt△AOB中,利用勾股定理求得BO=1.∴BD=6,AC=2.∴菱形ABCD面积为×AC×BD=3.故答案为:3.【点睛】本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.13、1【解析】

先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.14、【解析】

先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.【详解】方程组,由①+②,可得:,解得,把代入①可得:,因为,,所以,所以不等式组的解集是,故答案为:.【点睛】本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.15、2.1【解析】

根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.【详解】.解:∵BD⊥CA,∴∠ADB=90°,在Rt△ADB中,由勾股定理得:AB===1,∵E是AB的中点,∠ADB=90°,∴DE=AB=2.1,故答案为:2.1.【点睛】本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.16、【解析】

当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.【详解】解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,综上,的取值范围是:.【点睛】本题考查了一次函数系数与象限位置的关系,注意分类讨论.17、62.【解析】

根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【详解】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.18、(0,)【解析】

作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;【详解】解:作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;∵A的坐标为(﹣4,5),D是OB的中点,∴D(﹣2,0),由对称可知A'(4,5),设A'D的直线解析式为y=kx+b,∴,∴,∴,∴E(0,);故答案为(0,);【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.三、解答题(共66分)19、不是,理由见解析.【解析】

先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:如图,设梯子下滑至CD,∵Rt△OAB中,AB=2.5m,AO=2.4m,

∴OB=m,同理,Rt△OCD中,

∵CD=2.5m,OC=2.4-0.4=2m,

∴OD=m,∴BD=OD-OB=1.5-0.7=0.8(m).

答:梯子底端B向外移了0.8米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20、(1)见解析;(2)∠AGD=90°;(3).【解析】

(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,在△ADF和△DCE中;∴△ADF≌△DCE(SAS);(2)解:由(1)得△ADF≌△DCE,∴∠DAF=∠CDE,∵∠ADG+∠CDE=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,(3)过点B作BH⊥AG于H∵BH⊥AG,∴∠BHA=90°,∴∠BHA=∠AGD,∵四边形ABCD是正方形,∴AB=AD=BC,∠BAD=90°,∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,∴∠ABH=∠DAG,在△ABH和△ADG中,∴△ABH≌△ADG(AAS),∴AH=DG,∵BG=BC,BA=BC,∴BA=BG,∴AH=AG,∴DG=AG,∴.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.21、-x,0.【解析】

括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,化简后在x的取值范围内选一个使原式有意义的数值代入进行计算即可.【详解】原式====-x,,因为,所以x=0时,原式=0.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.22、BD=2;CD=【解析】

过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.【详解】解:如图,过点D作DE⊥BC于E,∵∠A=90°,AD=AB=,∴由勾股定理可得:BD=,∵∠CBD=30°,DEBE,∴DE=BD=×2=1,又∵Rt△CDE中,∠DEC=90°,∠C=45°,∴CE=DE=1,∴由勾股定理可得CD=.【点睛】本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.23、(1)见解析;(2)【解析】

(1)根据SAS即可证明;

(2)解直角三角形求出DF、OE、OF即可解决问题.【详解】(1)证明:,,即;,;又,.(2)如图,连接EB交AD于点O,在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF=,∵四边形EFBC是菱形,∴,​∴,∴

,∴,∴.【点睛】本题考查全等三角形的判定和性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)甲的众数和中位数都是7分;(2)选乙运动员更合适,理由见解析【解析】

(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)分别求得数据的平均数,然后结合方差作出判断即可.【详解】(1)甲运动员测试成绩中7出现的次数最多,故众数为7;成绩排序为:5,6,7,7,7,7,7,8,8,8,所以甲的中位数为=7,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论