下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初一数学知识点
初一数学学问点归纳1多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;
而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确 合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特别的代数式,可采纳“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n=am﹒an。
5、开头底数不相同的幂的乘法,假如可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。
(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(am)n=amn。
3、此法则也可以逆用,即:amn=(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍旧成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n=am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,留意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc。
2、运算时留意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,留意运算挨次,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必需做到不重不漏。
相乘时,要按肯定的挨次进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)?(a-b)的形式,然后看a2与b2是否简单计算。
初一数学学问点归纳2一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要留意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个详细的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是详细的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,全部字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于把握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
留意:首先确定结果的系数(即系数相除),然后同底数幂相除,假如只在被除式里含有的字母,则连同它的指数作为商的一个因式。
初一数学学问点归纳31.1正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(依据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的肯定值(absolutevalue),记作|a|。
一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。两个负数,肯定值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把肯定值相加。
2.肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把肯定值相除。0除以任何一个不等于0的数,都
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制药工厂出售合同模板
- 借款投资分红合同模板
- 大理装修找包工合同模板
- 2024年岗位代理协议
- 旋转火锅店铺转租合同模板
- 2024年仓储调拨服务条款
- 旧房维修合同模板
- 婚纱摄影托管合同模板
- 地磅买卖简易合同模板
- 二手房交易合同模板
- 浙江省杭州市十三中教育集团2024-2025学年七年级上学期期中科学试题(无答案)
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- 《珍爱生命远离火灾》消防安全教育课件
- 店铺门面转让合同协议书2024年
- DL∕T 618-2022 气体绝缘金属封闭开关设备现场交接试验规程
- 外事实务智慧树知到期末考试答案章节答案2024年山东外事职业大学
- 中医治疗“伤筋”医案57例
- 无线电遥控帆船讲解
- 压力与情绪管理(完整版)
- 福建省标准化考点巡视监控系统操作规范
- 金匮要略原文 .doc
评论
0/150
提交评论