灌浆初期高温影响水稻籽粒充实和剑叶理化特性-毕业论文_第1页
灌浆初期高温影响水稻籽粒充实和剑叶理化特性-毕业论文_第2页
灌浆初期高温影响水稻籽粒充实和剑叶理化特性-毕业论文_第3页
灌浆初期高温影响水稻籽粒充实和剑叶理化特性-毕业论文_第4页
灌浆初期高温影响水稻籽粒充实和剑叶理化特性-毕业论文_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

灌浆初期高温影响水稻籽粒充实和剑叶理化特性摘要:为探明灌浆初期高温热害降低水稻籽粒充实度的可能生理原因,本文以遗传背景相近而灌浆期耐热性存在显著差异的2个水稻纯系XN0437T(耐热)和XN0437S(热敏感)为材料,于水稻抽穗后第10天进行高温处理,调查了水稻籽粒充实度,测定了与水稻剑叶光合效率、细胞膜透性和渗透调节有关的生理指标。结果表明,高温处理后水稻籽粒充实度、叶绿素含量、剑叶的净光合速率和可溶性糖含量降低,热敏感纯系的下降幅度大于耐热纯系;超氧化物歧化酶(SOD)活性、细胞膜透性、丙二醛(MDA)和脯氨酸(Pro)含量增加,其中热敏感纯系的MDA含量、细胞膜透性增加幅度大于耐热纯系,而其SOD活性、脯氨酸含量的增加幅度小于耐热纯系。灌浆初期高温抑制水稻剑叶光合效率,增加细胞膜透性和改变细胞内环境是高温热害降低水稻籽粒充实度的生理原因。关键词:水稻;高温;籽粒充实度;理化特性Effectsofhightemperatureonricegrain-fillingofcaryopsisandphysiologicalbiochemicalcharacteristicofflagleaveatearlymilkystageofriceTheaimofthisexperimentwastoascertainpossiblephysiologicalcausesofhightemperaturedecreasinggrain-fillingrateatearlymilkystageofrice.Tworiceinbredlines,namedXN0437T(heat-sensitive)andXN0437S(heat-tolerant),wereselectedandtreatedbyhightemperatureatthe10thdayafterheading.Thegrainplumpnessrate,indexesrelatedtophotosyntheticefficiency,cellmembranepermeabilityandosmoticadjustmentinflagleavesweredetectedinricelinesXN0437TandXN0437S.TheresultshowedthatthegrainplumpnessratewasreducedunderhightemperatureinbothXN0437TandXN0437Sandthereducedrangeofheat-sensitivelinewasgreaterthanthatofheat-tolerantline.Thenetphotosyntheticrate,chlorophyllcontentandsolublesugarcontentweredecreasedincomparisonwithcontrolbothinheat-sensitiveandheat-tolerantricelines,andthedecreaserangeofthesephysiologicalmattercontentsweregreaterintheheat-sensitivelinethanthatoftheheat-tolerantline.Thesuperoxidedismutase(SOD)activity,malonaldehyde(MDA)content,cellmembranepermeabilityandproline(Pro)contentwereincreasedunderhightemperature,andtheincreasedrangeofMDAcontentandmembranepermeabilityinheat-sensitivelinewerehigherthanthatinheat-tolerantline,whiletheincreasedrangeofSODactivity,Procontentinheat-sensitivelinewaslessthanthatinheat-tolerantline.Thepresentstudysuggestedthatdecreasingthephotosyntheticefficiencyofflagleaves,damagingthestructureandfunctionofcellmembrane,andresultintheintracellularenvironmentalteringwerethephysiologicalcausesofhightemperatureatearlymilkystagelimitingthegrainplumpnessofrice.Keywords:rice;hightemperature;grainplumpness;physiologicalandbiochemicalcharacteristics高温是限制作物产量和品质的重要环境因子[1-3],不幸的是,作物不得不适应这种高温环境,因为过去温室气体的排放,导致今后几十年全球气候将持续上升;而且短期的夏季高温现象将较过去出现得更加频繁且持续时间更长[4、5]。水稻起源于热带和亚热带地区,对高温气候具有一定的忍耐能力,但是温度超过水稻最适生长的临界值时,便会影响其正常生长[6]。高温热害对水稻的全生育期都可形成危害,影响水稻产量最严重的生育时期是开花期和灌浆期;开花期遇高温热害影响水稻花药开裂与散粉而造成不正常受精,最终形成未受精的空壳籽粒而造成产量损失[3、7-9],而灌浆期尤其是灌浆初期(花后10-15天)遇高温热害则形成灌浆不充分的秕粒,降低籽粒粒重而最终造成减产[8、10]。在我国,夏季高温热害主要发生在长江流域及其以南的部分地区,一般存在两次高温过程,其中一次出现在出梅后的7月上、中旬,由于西太平洋副热带高压呈东西带状分布,脊线稳定在北纬28-32度,控制着长江中下游地区,于是该区域在较长时间内维持高温天气,经常连续数日日平均气温达35℃,有时部分地区日最高气温在40℃以上[11]。此时正值长江流域以南地区双季早稻的灌浆初期,经常形成“籽粒高温逼熟”,造成水稻产量损失。而双季早稻又是我国粮食生产过程中不可替代的一茬粮食作物,稻谷产量几次大的波动都与早稻面积和产量密切相关[12]关于高温对水稻功能叶的生理影响已有诸多报道,学者们认为高温导致功能叶的光合效率降低,膜透性增加,叶绿素、可溶性糖、可溶性蛋白质和游离脯氨酸的含量以及SOD活性升高[13、14]。这些研究主要探讨了抽穗至开花期高温热害对水稻的生理影响,而关于灌浆初期高温热害影响水稻籽粒充实度的生理原因分析鲜见报道[8]。为此,本文以本课题组选育的遗传背景相似(SSR分子标记检测结果)而灌浆初期对高温热害忍耐力(结实率调查结果)存在显著差异的水稻纯系XN0437T(耐高温)和XN0437S(高温敏感)为材料[16],在灌浆初期(抽穗后第10天)进行高温处理,测定了水稻剑叶与光合效率和理化特性有关的生理指标,水稻成熟后调查了籽粒充实度,拟探明灌浆初期高温热害降低水稻籽粒充实度的可能生理原因,旨在为选育灌浆初期耐热的水稻新品种提供数据参考。2材料与方法2.1试验材料试验材料为耐热水稻纯系XN0437T和热敏感纯系XN0437S,它们是协青早B/N22//协青早B的回交重组自交系,且遗传背景相近而灌浆初期耐热性存在显著差异[16]。2.2水稻材料的培育水稻的培育采用桶(高为50㎝,内径30㎝)栽的方法,稻田土壤经晒干、粉碎、过筛和搅拌均匀后等量装桶,每桶20㎏,离桶内土表15㎝层面上均匀施用1g总氮含量15%、有效磷含量4%和有效钾含量6%的水稻专用肥、作为基肥,土壤经自来水浸泡5d后待用。稻种播种于大田,3叶1心移栽入桶,每桶环形栽植生育进程与长势基本一致的单本秧苗10棵;在自然条件下按照常规栽培管理方法培育至抽穗期;并标记同一天抽穗的主茎,以保证所取样品的生长发育进程基本一致。2.3高温处理与取样高温处理在人工气候室内进行。带标记的主茎抽穗后第10天开始进行高温处理,高温处理和平行对照的温度分别为38.0±0.5℃和25.0±0.5℃[16],处理时间设3、6、9、24、48、72、96和120小时;光照时长14小时,相对湿度80±5%;高温处理设置3次重复。高温处理结束后,水稻置于自然条件下恢复生长24小时,各处理取生育进程一致的水稻剑叶约2..3水稻籽粒充实度调查高温处理结束后,水稻移至自然条件下按常规栽培管理方法培育成熟,每处理收获带标记的主茎6穗,调查籽粒充实度。籽粒充实度调查参照张宏玉等的方法[17],取样当时将脱粒后的每穗谷粒置于自来水中漂选,下沉者为饱粒,上浮者为空粒和秕粒,晒干后用自制透光装置将空壳粒和秕粒分开(无胚者为空壳粒,有胚者为秕粒),各处理的实粒和秕粒在统一平衡水分含量后分别称重。籽粒充实度(%)=100×(处理每穗的实粒重+秕粒重)/(对照每穗的实粒重+秕粒重)。2.4水稻剑叶的净光合作用速率和叶绿素含量(SPAD值)测定净光合作用速率采用美国Gene公司的LI-6400型便携式自动光合测定系统测定;SPAD值采用日本生产的SPAD-502PLUS型便携式叶绿素含量测定仪测定;各指标每样品重复测定3次。2.5叶片电导率测定水稻在自然条件下恢复生长24小时后,测定处理与对照水稻功能叶的电解质渗漏率。测定方法参照张宪政方法[18]。2.6与细胞理化特性有关的生理指标测定水稻移出人工气候室,在自然条件下恢复生长24小时后,测定各生理指标,方法参照高俊凤主编[19]的植物生理学实验指导进行:丙二醛(MDA)采用三氯乙酸-巴比妥酸法测定,可溶性糖采用蒽酮法测定,脯氨酸(Pro)采用磺基水杨酸-茚三酮法测定,超氧化物歧化酶(SOD)采用光照还原法测定。2.7计算与统计分析各测定指标的相对变化表示处理与其平行对照的差异,相对变化(%)=100×处理值/对照值;数据处理和统计分析采用Excel软件和DPS统计分析软件进行。3结果与分析3.1高温降低籽粒充实度籽粒充实度是衡量剑叶光合产物和茎鞘贮存物向籽粒运输和积累的重要指标[20]。由图2可知,高温处理后,两纯系籽粒充实度都呈现下降的趋势,随着高温处理时间的延长,籽粒充实度的下降幅度越大;热敏感纯系XN0437S的下降幅度大于耐热高温。当高温处理120小时后,XN0437S和XN0437T的籽粒充实度分别只有对照的68.7%和77.4%。图1灌浆初期高温降低水稻籽粒充实度变化图注:“HT”表示“高温处理时间”;“S”表示水稻材料“XN0437S”;“T”表示水稻材料“XN0437T”。(下同)3.2高温影响剑叶光合效率光合作用是植物最基本的生命活动,也是植物生长发育的原动力[21]。图2显示,高温处理6小时后,两水稻纯系的净光合作用速率就有约5%的下降,随着高温处理时间的延长,净光合作用速率下降幅度越大;在相同高温处理条件下,耐敏感纯系的下降幅度大于耐热纯系。高温处理120小时后,热敏感纯系和耐热纯系的净光合作用速率别为其平行对照的59.9%和76.1%。叶绿素含量是反映光合强度的重要指标,而SPAD值又是衡量叶片中叶绿素含量高低的可靠参数[22-24]。由图2可以看出,高温热害导致水稻剑叶的SPAD值下降,耐敏感纯系的下降速度大于耐热纯系,且随着高温处理时间的延长,SPAD值的下降幅度越大。高温处理120小时且在自然条件下恢复生长24小时后,热敏感纯系和耐热纯系的叶绿素含量分别为其平行对照的70.1%和76.6%。图2灌浆初期高温降低水稻剑叶的净光合作用速率和叶绿素含量3.3高温影响剑叶细胞膜特性和胞内环境3.3.1高温热害加强细胞膜的氧化作用SOD是植物体内清除活性氧自由基的关键酶,其活性的强弱与植物抗氧化能力密切相关[25]。由图3可知,高温处理后,两水稻纯系剑叶的SOD活性呈现先增加而后稍有下降的趋势;高温处理6小时后,耐热纯系剑叶的SOD活性始终高于耐热纯系。热敏感纯系在高温处理120小时后,SOD活性的增加达最大值、活性增加了49.3%;而耐热纯系XN0437T在高温处理96小时时,SOD活性的增加达最大值、活性增加了53.5%。丙二醛(MDA)是膜脂过氧化的产物,也是衡量细胞膜损伤程度的标志性物质[26]。从图3知,高温处理后,两纯系剑叶中的MDA含量较对照增加,随着高温处理时间的延长,MDA的增加幅度加大;热敏感纯系的增加幅度大于耐热纯系。高温处理120小时,热敏感纯系的MDA含量较对照增加了29.0%,耐热纯系增加了18.2%。图3灌浆初期高温增加水稻剑叶的SOD酶活性和丙二醛含量3.3.2高温热害增加细胞膜透性处理和对照的细胞膜透性差异是衡量植物遭受逆境伤害程度的重要指标,而相对电导率是评定细胞膜透性的一种有效方法[19]。图4显示,高温处理后,两水稻纯系的相对电导率与其对照相比,呈现上升的变化趋势,随着高温处理时间的延长,相对电导率增加越大;热敏感纯系的上升幅度大于耐热纯系。高温处理120小时后,热敏感纯系的电导率较对照增加了36.6%,耐热纯系较对照增加了23.2%。图4高温热害增加剑叶细胞膜的透性3.3.3高温热害影响细胞内渗透调节物质含量脯氨酸作为重要的渗透调节物质,其作用是保持原生质和环境渗透平衡、阻止水分丧失、保护膜结构的完整[27]。由图5可知,高温处理后,两水稻纯系的脯氨酸含量呈现上升的变化趋势,随着高温处理时间的延长,脯氨酸含量的增加幅度越大;耐热纯系的上升幅度大于热敏感纯系。高温处理120小时后,耐热纯系的脯氨酸含量较对照增加了52.6%,热敏感纯系增加了38.9%。可溶性糖不仅是植物体的能量物质,也是体内有效的渗透调节物质,可溶性糖在细胞内积累可以降低细胞的渗透势以维持细胞膨压,防止细胞被动脱水[19]。从图5可以看出,随着高温处理时间的延长,两水稻纯系的可溶性糖含量较其对照都呈下降的趋势,耐热纯系的可溶性糖含量的下降幅度小于热敏感纯系。高温处理120小时后,热敏感纯系的可溶性糖含量为其对照的77.7%,耐热纯系的可溶性糖含量为其平行对照的83.7%图5高温热害增加脯氨酸、降低可溶性糖的含量4讨论水稻籽粒充实是指颖花受精后,光合产物和茎鞘贮存物向籽粒的运输和积累的过程[28],此时遇高温热害会严重影响籽粒充实度而造成产量损失[29]。Lin等[30]于抽穗-灌浆期采用35.0/30.0℃(白天/夜间)的温度对水稻进行不同时长的高温处理后,发现两个水稻品种的穗重和千粒重明显下降。本文在水稻灌浆初期对两纯系进行了不同时间长的高温处理,发现水稻籽粒充实度下降,并且随着高温处理时间的延长,充实度下降幅度越大;在相同高温处理条件下,热敏感纯系籽粒充实度的下降幅度大于耐热纯系。前人主要研究了抽穗-灌浆期高温对水稻籽粒充实度或粒重的影响[30、31]绿色植物的光合作用包括光反应和暗反应两个过程,光反应通过叶绿体完成能量的吸收、传递和转换,暗反应由一系列酶催化将活跃的化学能转变成稳定的化学能;光合作用过程对高温非常敏感,高温胁迫不仅破坏参与光反应的叶绿素,也会抑制参与暗反应的酶活性,从而影响植物光合作用效率[21]。张桂莲等[14]在水稻始穗期进行连续7天的高温(平均33.5℃)处理,发现水稻剑叶光合速率和叶绿素含量在高温处理1天后就有下降的趋势;随着处理时间的延长,剑叶光合速率和叶绿素含量继续下降,且品系间存在差异。本文在水稻灌浆初期对两纯系进行高温处理,也发现水稻剑叶的叶绿素含量和净光合作用速率下降,随着高温处理时间的延长,二者下降幅度越大,且热敏感纯系剑叶叶绿素含量和净光合作用速率的下降幅度大于耐热纯系。作物的产量只有极小部分物质来自根部吸收的营养物质,而大部物质则来自作物光合作用的产物,因此,本文认为高温胁迫造成植物器官衰老或在逆境下(如高温热害)遭受伤害,往往发生膜脂过氧化作用,产生超氧阴离子自由基和丙二醛(MDA),造成细胞膜透性增加,超氧化物歧化酶具有清除超氧阴离子自由基的作用,因此,植物体内超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量以及细胞膜渗透率可以反映植物遭受逆境伤害的程度[19]。张桂莲等[32]在分析高温胁迫对水稻剑叶保护酶活性的影响时,认为SOD活性在高温胁迫后都表现先升后降的趋势,耐热品系SOD活性的增幅大于热敏感品系;同时,水稻剑叶电解质外渗率升高,耐热品系电解质外渗率小于热敏感品系。雷东阳等[33]在抽穗期对8个耐热性不同的杂交水稻组合进行37℃的高温胁迫7天后,测定各组合倒1叶和倒2叶混合物的MDA含量,结果显示各杂交水稻组合的MDA含量极显著增加,且耐热性强的水稻品系MDA含量增幅明显低于热敏感水稻。本文在水稻灌浆初期对两纯系进行了不同时间长的高温处理后,也发现SOD活性、MDA含量和细胞膜渗透率增加,且随着处理时间的延长,上述三个指标的增幅加大,且耐热纯系的SOD活性大于热敏感纯系,而热敏感纯系的MDA可溶性糖不仅为植物的各种生命活动提供了所需的能量,而且是许多物质如纤维素、核苷酸和核酸等的组成成分,也是植物体内有效的渗透调节物质[19];脯氨酸普遍存在于动植物细胞中,在细胞适应胁迫过程中表现为细胞内的渗透调节剂、还原剂或能量来源、氮素储藏物质、羟基自由基清除剂、细胞内酶的保护剂以及降低细胞内酸度和调节氧化还原电势等的作用[27、34]。基于上述作用,可溶性糖和脯氨酸的含量变化一直作为生物耐逆境的重要评价指标。张桂莲等[14]研究了抽穗期受高温胁迫的两个耐热性不同的水稻品种的可溶性糖和脯氨酸含量变化,认为高温胁迫下,剑叶中的可溶性糖含量降低,脯氨酸含量增加,且随着高温胁迫时间延长,可溶性糖含量持续下降,剑叶中脯氨酸含量则持续上升,耐热品系可溶性糖含量的下降幅度小于热敏感品系,而脯氨酸含量的上升幅度则大于热敏感品系。本研究在水稻灌浆初期对两纯系进行了不同时间长的高温处理后,测定处理和平行对照剑叶的可溶性糖和脯氨酸含量,也得出了相同的结论。综合两水稻纯系剑叶各生理指标在高温与常温下的变化情况,本文认为高温破坏了细胞膜的结构和功能,使细胞膜透性增加、细胞质外渗,从而改变了细胞内环境、影响了细胞内物质的合成、转换和运输等正常生命活动,导致向籽粒运输和贮藏的物质减少是造成水稻籽粒充实度降低,是最终造成水稻减产的生理原因之二。参考文献[1] LiH,ChenZ,HuM,WangZ,HuaH,YinC,ZengH.Differenteffectsofnightversusdayhightemperatureonricequalityandaccumulationprofilingofricegrainproteinsduringgrainfilling.Plantcellreports,2011,30(9):1641-59.[2] LinCJ,LiCY,LinSK,YangFH,HuangJJ,LiuYH,LurHS.Influenceofhightemperatureduringgrainfillingontheaccumulationofstorageproteinsandgrainqualityinrice(oryzasatival.).Journalofagriculturalandfoodchemistry,2010,58(19):10545-52.[3] JagadishSV,CraufurdPQ,WheelerTR.Hightemperaturestressandspikeletfertilityinrice(oryzasatival.).Journalofexperimentalbotany,2007,58(7):1627-35.[4] ChallinorAJ,EwertF,ArnoldS,SimeltonE,FraserE.Cropsandclimatechange:Progress,trends,andchallengesinsimulatingimpactsandinformingadaptation.Journalofexperimentalbotany,2009,60(10):2775-89.[5] DavidRE,BrionyH,PhilipDJ,ThomasCP,ThomasRK,DavidEP,M.JamesS,VyacheslavR,NeilP,PaulJandChristopherKF.Maximumandminimumtemperaturetrendsfortheglobe.Science,1997,277(18):364-367. [6] WelchJR,VincentJR,AuffhammerM,MoyaPF,DobermannA,DaweD.Riceyieldsintropical/subtropicalasiaexhibitlargebutopposingsensitivitiestominimumandmaximumtemperatures.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2010,107(33):14562-7.[7] 汤日圣,郑建初,张大栋,金之庆,陈留根,黄益洪,石春林,葛道阔.高温对不同水稻品种花粉活力及籽粒结实的影响.江苏农业学报,2006,22(4):369-373.[8] 陶龙兴,谈惠娟,王熹,曹立勇,宋建,程式华.开花和灌浆初期高温胁迫对国稻6号结实的生理影响.作物学报,2009,35(1):110-117. [9] MatsuiT,OmasaK.Rice(oryzasatival.)cultivarstoleranttohightemperatureatflowering:Anthercharacteristics.Annalsofbotany,2002,89(6):683-7. [10] 婧盛,陶红娟,陈留根.灌浆结实期不同时段温度对水稻结实与稻米品质的影响.中国水稻科学,2007,21(4):396-402. [11] 彭海燕,周曾奎,赵永玲,魏建苏,杨秋明.2003年夏季长江中下游地区异常高温的分析.气象科学,2005,25(4):355-361.[12]农业部优质农产品开发服务中心.中国南方粮食结构优化研究.北京:气象出版社,1999,71-5、105-8.[14] 张桂莲,陈立云,张顺堂,刘国华,唐文邦,贺治洲,王明.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学,2007,40(7):1345-1352. [15] 汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响.植物生理与分子生物学学报,2005,31(6):657-662. [16] LiaoJ-L,ZhangH-Y,ShaoX-L,etal.Identificationonheattoleranceofbackcrossrecombinantricelinesandscreeningofbackcrossintrogressionlineswithheattoleranceatmilkystage.RiceScience,2011,18(4):Inpress. [17] 张宏玉,刘凯,钟平安,王锋尖,黄英金,徐正进.水稻品种灌浆期耐热性的综合评判.生态学报,2006,26(7):2154-2160. [18] 张宪政,主编.作物研究法.北京:中国农业出版社,1992:197-212. [19] 高俊凤,主编.植物生理学实验指导.北京:高等教育出版社,2006. [20]赵成国,徐海港,李刚华,丁艳锋,王绍华.超高产单季粳稻抽穗期群体构成研究.南京农业大学学报,2011,34(2):23-28.[21] 潘瑞炽,主编.植物生理学(第五版).北京:高等教育出版社,2004:56-94. [22] NagaiT,MakinoA.Differencesbetweenriceandwheatintemperatureresponsesofphotosynthesisandplantgrowth.Plant&cellphysiology,2009,50(04):744-55.[23]LarkumAW.Limitationsandprospectsofnaturalphotosynthesisforbioenergyproduction.CurrOpinBiotechnol,2010,21(03):271-6.[24]钱银飞,邱才飞,邵彩虹,陈先茂,谢江,邓国强,彭春瑞,任天志.控蘖剂对超级杂交早稻金优458生长发育及产量形成的影响.杂交水稻,2011,26(3):71-75.[25]MichielsC,RaesM,ToussaintO,etal.ImportanceofSe-glutathioneperoxidase,catalase,andCu/Zn-SODforcellsurvivalagainstoxidativestress.Freeradicalbiology&medicine,1994,17(03):235-48.[26]KhalidH,SatyendraK,NingthoujamM,SunainaZ,TasneemF.BiochemicalEffectofCarbarylonOxidativestress,AntioxidantenzymesandOsmolytesofCyanobacteriumCalothrixbrevissima.BullEnvironContamToxicol,2011,87(6):615-620.[27]SingerAL,BunnellSC,ObstfeldAE,etal.Rolesoftheproline-richdomaininSLP-76subcellularlocalizationandTcellfunction.TheJournalofbiologicalchemistry,2004,279(15):15481-90.[28] 许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(04):237-43.[29]TashiroTandWardlawIF.Theeffectofhightemperatureonkerneldimensionandthetypeandoccurrenceofkerneldamageinrice[J].AustralianJournalofAgriculturalResearch,1991,42(03):485-96.[30]LinC-J,LiC-Y,LinS-K,YangF-H,HuangJ-J,LiuY-HandLurH-S.Influenceofhightemperatureduringgrainfillingontheaccumulationofstorageproteinsandgrainqualityinrice(OryzasativaL.).J.Agric.FoodChem.,2010,58(19):10545-52.[31]周浩,胡文彬,王作平,彭克勤,肖国樱.抽穗扬花期高温对水稻重组自交系群体RIL47结实率的影响.中国生态农业学报,2011,19(1):69-74.[32]张桂莲,陈立云,张顺堂,肖应辉,贺治洲,雷东阳.高温胁迫对水稻剑叶保护酶活性和膜透性的影响.作物学报,2006,32(9):1306-1310.[33]雷东阳,陈立云,李稳香,姜琴.高温对不同杂交稻开花期影响的生理差异.农业现代化研究,2005,26(05):397-400.[34]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,1984,1:15-21.

附件原始数据与统计分析附表1籽粒充实度调查原始数据与分析附表1-A秕粒重和实粒重水稻成熟后,取带标记的水稻主穗6穗分别脱粒后,采用自来水漂选法分出秕粒和实粒,并去除空壳粒,晒干并统一平衡水份后按穗分别称重水稻材料处理时间秕粒重实粒重穗1穗2穗3穗4穗5穗6穗1穗2穗3穗4穗5穗6XN0437S对照30.6250.6210.6290.6470.6180.5913.3753.3713.3793.1973.3683.34160.6270.6120.650.6270.6190.6153.4373.3623.443.3173.3693.13590.6180.6270.6840.6350.6090.6653.4683.3773.4343.3853.4593.415240.6210.6160.6740.6810.6390.6193.4713.4663.4243.4313.443.369480.6340.6930.7020.6640.6010.6383.4843.3433.3523.4143.3513.388720.6620.6310.6110.6570.6170.6053.4123.3313.3663.4073.423.355960.6460.6740.6230.6190.6430.6593.3963.3243.4133.3643.3933.4091200.5970.6340.6320.6790.6720.6273.4473.3843.3823.4293.4223.377处理30.6120.6410.6140.6340.6110.5973.3543.2973.2963.3383.223.29160.6220.6180.6250.6420.6150.593.3083.2443.2793.3573.3453.35290.7040.6910.7250.7040.6970.6933.3493.3173.3043.3183.2913.272240.710.7180.7710.7260.7010.7533.1193.0273.1693.2353.093.123480.7380.7330.7880.7940.7550.7362.8183.0142.9772.9012.9913.017720.7710.8260.8340.7990.7410.7752.6382.7562.6962.7642.832.79960.8130.7820.7620.8080.7680.7562.5712.3542.4572.2782.3292.4191200.8370.8630.8160.8120.8340.8491.8731.982.0321.9461.9571.89XN0437T对照30.6470.6560.6820.6270.6270.613.3183.3233.3563.1573.2923.25460.6230.6770.6490.6210.6110.6243.3433.3373.3713.2463.3573.25590.6410.6260.6760.6640.6220.6513.3853.2983.3933.3423.3593.353240.6570.6340.6280.6110.6770.6343.4033.3773.3373.3263.3993.3480.6530.6370.6960.6060.6110.6943.413.2823.3483.3073.2633.375720.6720.6920.6290.6110.6390.6613.3723.3283.2923.3073.3453.316960.6750.6210.6230.6610.6270.6423.3623.2513.3243.3233.3123.3391200.6840.6470.6340.6750.6420.6383.4123.3253.313.3883.353.31处理30.6820.630.6180.6620.6150.6443.2363.2573.3423.3253.2723.22960.6420.6260.640.6550.6090.6583.1983.3293.3133.2213.3443.22790.6760.660.6120.6830.6560.6863.3193.3113.1863.2493.2163.276240.7150.6690.6630.6450.7110.6693.1013.1023.2073.0783.0743.208480.6880.6720.7380.740.7160.732.9952.8862.9833.1652.8983.03720.7750.7280.7640.7450.6740.7962.8172.752.7882.8242.8292.874960.7110.7380.7420.7960.8150.7682.6862.5682.7092.6642.6932.821200.720.8820.8690.7110.8770.8732.3732.2122.262.362.2432.208

附表1-B籽粒充实度计算公式(%)=100×(对照的秕粒重+实粒重)/(对照的秕粒重+实粒重)水稻材料粒重36924487296120XN0437S对照(秕粒重+实粒重)3.9603.9684.0634.0754.0444.0124.0274.047处理(秕粒重+实粒重)3.9183.9334.0113.8573.7103.5373.1832.782籽粒充实度(%)98.999.198.794.691.788.179.068.7XN0437T对照(秕粒重+实粒重)3.9253.9524.0023.9973.9803.9773.9604.003处理(秕粒重+实粒重)3.9193.9103.9223.8073.7073.5613.4523.098籽粒充实度(%)99.898.998.095.293.189.587.277.4附表2光合作用速率附表2-A两水稻材料的处理与对照的光合作用速率测定值水稻材料重复36924487296120XN0437S对照118.6117.6622.2722.5217.3522.5318.2122.61220.4222.2617.0316.9421.4617.8921.9919.37318.1718.118.9417.5619.919.2719.7117.96处理118.9118.2816.1815.8714.6114.6112.8311.78219.2519.0317.3415.6915.314.6513.312.13318.3117.6716.5216.3115.1113.613.812.01XN0437T对照121.3418.7622.5219.0722.5320.8218.2523.37218.3721.5819.6722.4318.4923.1322.5921.16319.4520.8618.4821.1822.1319.8723.6521.05处理119.8318.7818.4317.8117.6817.6416.4416.8218.6819.7117.8718.116.9317.7516.5916.44319.4219.6116.917.7317.7516.6317.5416.65附表2-B光合作用速率的相对变化相对变化率%=100*处理值/对照平均值水稻材料重复36924487296120XN0437S199.294.583.383.574.773.464.259.02101.098.489.382.578.273.666.660.7396.091.485.185.877.268.469.160.1平均98.794.885.984.076.771.866.659.9标准误2.4963.5223.0721.6781.8212.9902.4290.890XN0437T1100.684.082.976.576.9294.796.688.486.680.483.477.275.2398.596.183.684.984.378.281.676.2平均97.994.987.785.682.981.578.476.1标准误2.95562.50263.82780.93182.15952.90192.77490.8272附表3叶绿素含量(SPAD值)附表3-A两水稻材料的处理与对照的叶绿素含量测定值水稻材料重复36924487296120XN0437S对照141.8742.3342.6542.0741.1744.6743.7145.88242.5641.1742.5343.1443.1642.8946.144.17342.6542.0143.8744.2543.2445.5245.3646.19处理141.6441.1541.1639.8836.8436.233.6732.2242.3941.2740.7840.5336.7735.9535.1331.08342.6742.0541.3839.937.2536.534.0532.17XN0437T对照142.7846.2443.9146.1444.545.1744.2444.85245.1343.1245.7844.2845.3143.6645.3346.65341.8541.4541.6743.543.8946.2847.1747.19处理142.8543.9743.2143.1740.7539.1437.5734.72243.6842.6443.2742.2841.2538.6337.236.02342.7642.5542.3542.5640.9639.8538.0135.55附表3-B叶绿素含量的相对变化相对变化率%=100*处理值/对照平均值水稻材料重复36924487296120XN0437S198.398.495.792.486.681.674.770.92100.198.694.893.986.581.078.068.43100.7100.596.292.587.682.375.670.8平均99.799.295.692.986.981.676.170.1标准误1.2571.1680.7060.8570.6100.6211.6811.405XN0437T199.1100.898.796.791.486.982.475.12101.097.898.894.792.685.881.677.9398.997.696.795.391.988.583.476.9平均99.698.798.195.692.087.182.576.6标准误1.1731.8241.1761.0190.5631.3610.8901.424

附表4SOD活性测定的原始数据附表4-A样品提取液总体积V(ml)、鲜样重量W(克)和根据标准曲线获得的SOD活性测定值水稻材料处理提取液总体积(ml)=V样品质量(g)=WSOD活性测定值=C重复1重复2重复3重复1重复2重复3重复1重复2重复3XN0437S对照0.6830.610.6293.0262.7192.409870.6170.7332.9562.4332.2520.5210.5790.5942.8372.2762.792244.354.24.350.5530.5880.5322.1822.7532.70240.6550.5350.7413.0592.6933.465750.5660.4770.4652.7512.4942.3169890.730.7213.5763.5063.86410.5340.6450.5143.1653.0842.796处理0.6370.5490.5362.7792.4582.4280.410.4780.5541.8562.0862.46550.4770.560.6332.2432.8643.1150.560.5190.52.6982.7392.43640.6110.4130.773.3632.3914.4570.5250.4950.5953.6423.2713.70696444.10.7070.6930.6415.3295.3844.79712020.6410.6117.8015.5935.041XN0437T对照34.34.354.250.7080.7420.82.9693.123.25864440.7350.6910.6953.3023.0143.2290.5150.5180.5072.2212.3752.330.4390.4860.492.1622.1772.23948444.10.6260.6130.5223.042.8462.57670.6130.6150.5323.0123.0872.85990.5440.5110.5132.9862.7332.57310.7080.4380.4883.7572.4983.142处理50.6190.8050.6062.6673.5262.77550.5140.5980.5332.2892.6492.3530.5760.6090.5152.892.8072.54324520.720.7493.5543.9643.724484.3930.5030.6422.9692.8593.27370.4130.5120.5653.0783.9024.374950.4440.5010.3953.6134.2933.369150.580.4940.5845.0254.1385.073

附表4-B单位重量鲜样SOD活力计算公式=C×(V/2)/WC为SOD活性测定值,V为提取液总体积(ml),W为鲜样重量,2为测定体积2ml水稻材料重复36924487296120XN0437S对照19.52513.0511.4358.5829.80710.20710.89912.44729.8068.2818.8459.83210.57110.989.84610.51938.2346.1459.87111.0479.58610.83310.71811.967处理18.94310.18510.34510.35811.55914.22115.07516.95929.4029.60110.86811.34712.15813.87715.53817.88739.7399.34410.21110.71812.13613.39115.34117.326XN0437T对照19.0168.9859.05710.3429.71210.31812.07610.34829.1468.7249.3999.2959.28510.79211.76612.26238.6549.2929.8819.59610.11611.55410.78413.843处理19.0489.57510.28610.90213.09916.39618.30919.0629.0899.3039.67911.28612.50516.00417.99518.42839.2739.60210.12310.44112.4916.25718.55118.459附表4-CSOD活力的相对变化相对变化率%=100*处理值/对照平均值水稻材料36924487296120XN0437S197.3111.2102.9105.5115.7133.2143.7145.62102.3104.8108.1115.5121.7130.0148.2153.63106.0102.0101.6109.1121.5125.5146.3148.8平均101.9106.0104.2110.1119.7129.6146.1149.3标准误4.3494.7063.4545.0973.4013.9072.2164.014XN0437T1101.2106.4108.9111.9135.0150.6158.6156.92101.7103.4102.5115.8128.9147.0155.9151.73103.7106.7107.2107.1128.7149.3160.7151.9平均102.2105.5106.2111.6130.8149.0158.4153.5标准误1.3411.8383.3264.3423.5791.8252.4152.932

附表5丙二醛(MDA)含量测定附表5-A三种波长下的测定值水稻材料处理600nm测定值(V600)450nm测定值(V450)532nm测定值(V532)重复1重复2重复3重复1重复2重复3重复1重复2重复3XN0437S对照30.06910.07780.08340.52410.5730.54210.38380.40140.393860.07310.08160.08030.53220.53250.5640.39720.41360.378790.06810.06730.08260.51440.53170.57540.39220.38110.407240.07550.068070.08110.51860.54320.57450.39870.39320.4218480.07380.07390.08210.53850.54040.54760.38140.41380.4103720.07470.08110.06870.52080.54380.58070.3910.39710.4164960.07970.08370.07510.51680.53910.57020.42010.39810.39331200.08190.07550.08230.52440.54410.55390.43240.39790.3896处理30.07260.07250.07170.5170.4610.50080.38930.38510.386460.07510.08090.07960.48840.47760.51640.40060.41740.406190.0810.07580.07430.55460.51870.48240.42230.43050.4146240.08390.07830.07460.54620.4970.52710.44610.44090.4231480.07540.07310.08680.4940.55040.53210.44130.43640.4518720.07260.07920.08230.5160.53110.53620.44530.45270.4612960.07820.08220.08120.51450.51640.55270.470.46630.46571200.07250.08230.07740.54020.53010.51740.48390.4910.4778XN0437T对照30.05770.06040.06010.57930.53720.54180.38820.35910.386260.06190.05580.05350.56660.54110.53490.37910.39490.395790.06470.06210.06640.57660.6020.57930.41870.38960.3601240.06570.06840.06880.5230.51680.53130.39810.37320.4081480.07180.06950.06490.58250.57750.52310.40410.39240.4125720.07470.07060.0680.57030.55860.59060.42230.39950.4168960.07590.07460.07140.55460.56120.5780.39550.37950.40371200.08020.07350.07510.53530.56980.5470.39190.41820.3785处理30.07320.06790.06910.59380.64360.61280.39020.40370.39760.08720.07910.08620.59410.63220.61770.42710.4380.436690.07910.08260.07740.58040.630.61730.42250.43940.4201240.08270.08660.08480.61970.61190.58950.43950.44820.4343480.07080.08170.07630.65850.58210.61910.44530.45340.4506720.08010.07880.08070.59710.62170.65170.4640.47650.4618960.07730.08490.07580.63540.66280.61690.44760.4610.441200.08130.07460.07750.65210.61470.67730.46540.44250.4591

附表5-B丙二醛(MDA)含量计算丙二醛含量计算公式=6.45×(V532-V600)-0.56×V450水稻材料重复36924487296120XN0437S对照11.7361.7921.8021.7941.6821.7481.9061.96721.7661.8431.7261.7931.891.7341.7261.77531.6991.6091.771.8761.811.9171.7331.672处理11.7531.8261.8912.032.0832.1152.2392.35121.7581.7031.7972.062.0352.1122.1882.33931.7491.8171.7251.9532.0562.1442.1712.293XN0437T对照11.8071.7291.961.8511.8171.9231.7511.71121.6261.8841.7751.6771.7591.8091.6521.90431.81.9081.571.8911.9491.9191.821.651处理11.7121.861.8021.9542.0472.1422.0332.11221.8051.8711.8291.992.0712.2172.0552.02931.7351.9041.8651.9242.0682.0932.0042.082附表5-C丙二醛含量的相对变化相对变化率%=100*处理值/对照平均值水稻材料重复36924487296120XN0437S1101.1104.5107.1111.5116.1117.5125.2130.32101.497.4101.8113.1113.4117.4122.3129.63100.9103.997.7107.2114.6119.1121.4127.1平均101.1101.9102.2110.6114.7118.0123.0129.0标准误0.2603.9224.7143.0311.3410.9821.9791.696XN0437T198.1101.1101.9108.2111.1113.7116.8120.32103.5101.7103.4110.2112.5117.7118.0115.6399.5103.5105.5106.5112.3111.1115.1118.6平均100.4102.1103.6108.3112.0114.2116.6118.2标准误2.7771.2441.7871.8290.7103.3151.4692.394

附表6相对电导率测定与计算附表6-A相对电导率测定值水稻材料重复36924487296120XN0437S对照141.4440.5640.2139.7538.1339.5539.1338.23239.8539.3641.3538.7339.8337.6740.5440.12339.2942.7842.5338.9139.7538.5237.6737.88处理142.2542.5943.9541.9642.8344.1545.8246.85239.5441.1343.8740.7143.6543.2147.9749.12341.841.7543.6541.9443.8145.0845.9347.21XN0437T对照142.3543.2542.1939.7743.2839.5243.9439.78239.7441.643.941.2139.543.6644.6344.35341.839.5739.6842.7942.6944.7339.2543.69处理141.8743.1545.9846.149.7352.1455.2157.87241.143.6748.345.2547.1254.5556.1559.78341.8344.0147.3346.5450.1153.3855.7358.22附表6-B相对电导率测定值变化相对变化率%=100*处理值/对照平均值水稻材料重复36924487296120XN0437S1102.4104.1106.3107.2109.2114.4117.1120.9298.5100.6106.1104.0111.2112.0122.6126.83102.8102.1105.5107.2111.7116.8117.4121.9平均101.3102.3105.9106.2110.7114.4119.1123.2标准误2.3781.7920.3761.8301.3402.4243.0963.149XN0437T1101.6104.0109.7111.7118.9122.3129.6135.8299.5105.3115.2109.7112.7127.9131.8140.33101.8106.1112.9112.8119.8125.2130.8136.6平均101.0105.2112.6111.4117.1125.1130.7137.6标准误1.2631.0442.7791.5893.8922.8271.1052.387

附表7脯氨酸含量测定附表7-A提取液总体积、样品鲜重和样品液在520nm波长下的测定值水稻材料处理提取液总体积(ml)=V样品质量(g)=W520nm波长测定值重复1重复2重复3重复1重复2重复3重复1重复2重复3XN0437S对照0.7130.70.7190.13250.1260.13070.7170.7270.7230.12950.12840.1330.7170.7190.7240.13360.1330.124850.7330.7280.7220.12840.1330.130740.7150.7050.7310.12780.13540.133750.7260.7170.7050.13660.1330.129590.7190.6820.6910.13770.13540.128410.7240.7350.7040.13950.12950.1354处理0.6470.6890.6960.12760.13040.131550.6520.6880.6640.13130.13690.131992.62.452.650.6870.670.7430.13360.13660.1330.670.6290.610.14480.12590.1225482.552.52.450.6410.6330.650.15770.160.1559722.52.452.50.6350.6050.6050.17230.17760.174190.6170.6030.6510.20280.19990.19751202.452.52.550.6030.6510.6210.21390.21650.2149XN0437T对照32.52.552.650.6080.6420.680.12950.12660.131962.42.452.40.6350.6910.6950.12780.1460.14840.6150.6180.6470.12130.11780.1219242.62.552.60.6390.6860.690.12840.13130.132540.6260.6130.6220.12950.13540.1301722.62.452.50.6130.6150.6320.12950.1360.1313962.4440.6110.6130.1330.1360.13071202.6080.6380.6880.1360.13190.1354处理0.6190.6050.6060.12780.12480.122650.6140.5980.6330.12010.12040.12130.6260.6590.6150.12840.13010.127850.6520.620.6490.13780.14250.1413482.652.452.60.5930.6030.6420.13830.14180.153722.52.652.650.6130.6120.6650.17180.15360.1641950.6040.6010.6350.1840.17110.18871202.652.42.650.6180.5940.6040.18110.19630.1875

附表7-B根据标准曲线计算和520nm波长测定值计算脯氨酸测定值A=23.8293511*A520+0.631605919水稻材料重复36924487296120XN0437S对照13.7893.7183.8153.6913.6773.8873.9133.95623.6343.6913.8013.8013.8583.8013.8583.71833.7463.8013.6063.7463.8013.7183.6913.858处理13.6723.7603.8154.0824.3894.7375.4645.72923.7393.8943.8873.6324.4444.8645.3955.79133.7653.7753.8013.5514.3474.7805.3385.753XN0437T对照13.7183.6773.5223.6913.7183.7183.8013.87223.6484.1113.4393.7603.8583.8723.8723.77533.7754.1683.5363.7893.7323.7603.7463.858处理13.6773.4943.6913.9153.9274.7255.0164.94723.6063.5013.7324.0274.0114.2924.7095.30933.5533.5223.6773.9994.2774.5425.1285.100附表7-C单位重量鲜样中脯氨酸含量(ug/g)脯氨酸含量=A×V/(2×m);其中,A为根据标准曲线和520nm波长测定值计算获得的脯氨酸测定值,V为提取液总体积ml数,2表示测定体积为2ml,m为鲜样重量。水稻材料重复36924487296120XN0437S对照16.9087.2597.1836.7986.9437.2277.6197.64927.0096.8556.8727.0487.3887.1577.3547.33437.0346.5716.7237.3947.2797.5147.2127.672处理17.0957.2097.2197.928.7319.32610.62711.63827.0556.7927.1067.5068.7769.84810.73711.11936.7626.9646.7787.2768.1929.87710.24911.811XN0437T对照17.6436.9497.4457.517.1267.8847.238.43927.2467.2876.9556.9897.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论