数字信号处理课件第11章-数字滤波器结构v1.0_第1页
数字信号处理课件第11章-数字滤波器结构v1.0_第2页
数字信号处理课件第11章-数字滤波器结构v1.0_第3页
数字信号处理课件第11章-数字滤波器结构v1.0_第4页
数字信号处理课件第11章-数字滤波器结构v1.0_第5页
已阅读5页,还剩60页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter8DigitalFilterStructuresHeretheinput-outputrelationinvolvesafinitesumofproducts:§8.1IntroductionOntheotherhand,anFIRsystemcanbeimplementedusingtheconvolutionsumwhichisafinitesumofproducts:TheactualimplementationofanLTIdigitalfiltercanbeeitherinsoftwareorhardwareform,dependingonapplicationsIneithercase,thesignalvariablesandthefiltercoefficientscannotberepresentedwithfiniteprecision§8.1Introduction★§8.1.1BlockDiagramRepresentationFortheimplementationofanLTIdigitalfilter,theinput-outputrelationshipmustbedescribedbyavalidcomputationalalgorithmToillustratewhatwemeanbyacomputationalalgorithm,considerthecausalfirst-orderLTIdigitalfiltershownbelow§8.1.1BlockDiagramRepresentationThefilterisdescribedbythedifferenceequationy[n]=-d1y[n-1]+p0x[n]+p1x[n-1]Usingtheaboveequationwecancomputey[n]forn0knowingtheinitialconditiony[n-1]andtheinputx[n]forn-1§8.1.1BlockDiagramRepresentation

y[0]=-d1y[-1]+p0x[0]+p1x[-1]y[1]=-d1y[0]+p0x[1]+p1x[0]

y[2]=-d1y[1]+p0x[2]+p1x[1].…Wecancontinuethiscalculationforanyvalueofthetimeindexnwedesire§8.1.1BlockDiagramRepresentationEachstepofthecalculationrequiresaknowledgeofthepreviouslycalculatedvalueoftheoutputsample(delayedvalueoftheoutput),thepresentvalueoftheinputsample,andthepreviousvalueoftheinputsample(delayedvalueoftheinput)Asaresult,thefirst-orderdifferenceequationcanbeinterpretedasavalidcomputationalalgorithm§8.1.2BasicBuildingBlocksThecomputationalalgorithmofanLTIdigitalfiltercanbeconvenientlyrepresentedinblockdiagramformusingthebasicbuildingblocksshownbelowx[n]y[n]w[n]Ax[n]y[n]y[n]x[n]x[n]x[n]x[n]AdderUnitdelayMultiplierPick-offnode§8.1.2BasicBuildingBlocksAdvantagesofblockdiagramrepresentation(1)Easytowritedownthecomputationalalgorithmbyinspection(2)Easytoanalyzetheblockdiagramtodeterminetheexplicitrelationbetweentheoutputandinput★★√√§8.1.2BasicBuildingBlocks(3)Easytomanipulateablockdiagramtoderiveother“equivalent”blockdiagramsyieldingdifferentcomputationalalgorithms(4)Easytodeterminethehardwarerequirements(5)Easiertodevelopblockdiagramrepresentationsfromthetransferfunctiondirectly√√√§8.1.3AnalysisofBlockDiagramsCarriedoutbywritingdowntheexpressionsfortheoutputsignalsofeachadderasasumofitsinputsignals,anddevelopingasetofequationsrelatingthefilterinputandoutputsignalsintermsofallinternalsignalsEliminatingtheunwantedinternalvariablesthenresultsintheexpressionfortheoutputsignalasafunctionoftheinputsignalandthefilterparametersthatarethemultipliercoefficients★★§8.1.3AnalysisofBlockDiagramsTheoutputE(z)oftheadderisE(z)=X(z)+G2(z)Y(z)ButfromthefigureY(z)=G1(z)E(z)Example-Considerthesingle-loopfeedbackstructureshownbelow§8.1.3AnalysisofBlockDiagramsEliminatingE(z)fromtheprevioustwoequationswearriveat

[1-G1(z)G2(z)]Y(z)=G1(z)X(z)

whichleadsto§8.1.3AnalysisofBlockDiagramsExample-Analyzethecascadedlatticestructureshownbelowwherethez-dependenceofsignalvariablesarenotshownforbrevity§8.1.3AnalysisofBlockDiagramsTheoutputsignalsofthefouraddersaregivenbyW1=X-S2W2=W1-S1W3=S1-W2Y=W1-S2FromthefigureweobserveS2=z-1W3S1=z-1W2

§8.1.3AnalysisofBlockDiagramsSubstitutingthelasttworelationsinthefirstfourequationsweget

W1=X-z-1W3

W2=W1-z-1W2

W3=z-1W2+W2Y=W1+z-1

W3

FromthesecondequationwegetW2=W1/(1+z-1)andfromthethirdequationwegetW3=(+z-1)W2

§8.1.3AnalysisofBlockDiagramsCombiningthelasttwoequationswegetwefinallyarriveatSubstitutingtheaboveequationin§8.2EquivalentStructuresTwodigitalfilterstructuresaredefinedtobeequivalentiftheyhavethesametransferfunctionWedescribenextanumberofmethodsforthegenerationofequivalentstructuresHowever,afairlysimplewaytogenerateanequivalentstructurefromagivenrealizationisviathetransposeoperation★★§8.2EquivalentStructuresTransposeOperation(1)Reverseallpaths(2)Replacepick-offnodesbyadders,andviceversa(3)InterchangetheinputandoutputnodesAllothermethodsfordevelopingequivalentstructuresarebasedonaspecificalgorithmforeachstructure★★§8.2EquivalentStructuresThereareliterallyaninfinitenumberofequivalentstructuresrealizingthesametransferfunctionItisthusimpossibletodevelopallequivalentrealizationsInthiscoursewerestrictourattentiontoadiscussionofsomecommonlyusedstructures§8.2EquivalentStructuresUnderinfiniteprecisionarithmeticanygivenrealizationofadigitalfilterbehavesidenticallytoanyotherequivalentstructureHowever,inpractice,duetothefinitewordlengthlimitations,aspecificrealizationbehavestotallydifferentlyfromitsotherequivalentrealizations§8.2EquivalentStructuresHence,itisimportanttochooseastructurethathastheleastquantizationeffectswhenimplementedusingfiniteprecisionarithmeticOnewaytoarriveatsuchastructureistodeterminealargenumberofequivalentstructures,analyzethefinitewordlengtheffectsineachcase,andselecttheoneshowingtheleasteffects★★§8.2EquivalentStructuresIncertaincases,itispossibletodevelopastructurethatbyconstructionhastheleastquantizationeffectsWedeferthereviewofthesestructuresafteradiscussionoftheanalysisofquantizationeffectsHere,wereviewsomesimplerealizationsthatinmanyapplicationsarequiteadequate§8.3BasicFIRDigitalFilterStructures whichisapolynomialinz-1Inthetime-domaintheinput-outputrelationoftheaboveFIRfilterisgivenbyAcausalFIRfilteroforderNischaracterizedbyatransferfunctionH(z)givenby§8.3.1DirectFormFIRDigitalFilterStructuresAnFIRfilteroforderNischaracterizedbyN+1coefficientsand,ingeneral,requireN+1multipliersandNtwo-inputaddersStructuresinwhichthemultipliercoefficientsarepreciselythecoefficientsofthetransferfunctionarecalleddirectformstructures

★★§8.3.1DirectFormFIRDigitalFilterStructuresAdirectformrealizationofanFIRfiltercanbereadilydevelopedfromtheconvolutionsumdescriptionasindicatedbelowforN=4★★§8.3.1DirectFormFIRDigitalFilterStructures whichispreciselyoftheformoftheconvolutionsumdescriptionThedirectformstructureshownonthepreviousslideisalsoknownasatappeddelaylineoratransversalfilterAnanalysisofthisstructureyields§8.3.1DirectFormFIRDigitalFilterStructuresThetransposeofthedirectformstructureshownearlierisindicatedbelow★★§8.3.2CascadeFormFIRDigitalFilterStructuresAhigher-orderFIRtransferfunctioncanalsoberealizedasacascadeofsecond-orderFIRsectionsandpossiblyafirst-ordersectionTothisendweexpressH(z)aswherek=N/2ifNiseven,andk=(N+1)/2ifNisodd,with

2k=0§8.3.2CascadeFormFIRDigitalFilterStructuresAcascaderealizationforN=6isshownbelowEachsecond-ordersectionintheabovestructurecanalsoberealizedinthetransposeddirectform★★§8.3.3Linear-PhaseFIRStructuresThesymmetry(orantisymmetry)propertyofalinear-phaseFIRfiltercanbeexploitedtoreducethenumberofmultipliersintoalmosthalfofthatinthedirectformimplementationsConsideralength-7Type1FIRtransferfunctionwithasymmetricimpulseresponse§8.3.3Linear-PhaseFIRStructuresRewritingH(z)intheform weobtaintherealizationshownbelow★★§8.3.3Linear-PhaseFIRStructuresAsimilardecompositioncanbeappliedtoaType2FIRtransferfunctionForexample,alength-8Type2FIRtransferfunctioncanbeexpressedasThecorrespondingrealizationisshownonthenextslide§8.3.3Linear-PhaseFIRStructuresNote:TheType1linear-phasestructureforalength-7FIRfilterrequires4multipliers,whereasadirectformrealizationrequires7multipliers§8.3.3Linear-PhaseFIRStructuresNote:TheType2linear-phasestructureforalength-8FIRfilterrequires4multipliers,whereasadirectformrealizationrequires8multipliersSimilarsavingsoccursintherealizationofType3andType4linear-phaseFIRfilterswithantisymmetricimpulseresponses§8.4BasicIIRDigitalFilterStructuresThecausalIIRdigitalfiltersweareconcernedwithinthiscoursearecharacterizedbyarealrationaltransferfunctionofz-1or,equivalentlybyaconstantcoefficientdifferenceequationFromthedifferenceequationrepresentation,itcanbeseenthattherealizationofthecausalIIRdigitalfiltersrequiressomeformoffeedback§8.4BasicIIRDigitalFilterStructuresAnN-thorderIIRdigitaltransferfunctionischaracterizedby2N+1uniquecoefficients,andingeneral,requires2N+1multipliersand2Ntwo-inputaddersforimplementationDirectformIIRfilters:Filterstructuresinwhichthemultipliercoefficientsarepreciselythecoefficientsofthetransferfunction★★§8.4.1DirectFormIIRDigitalFilterStructuresConsiderforsimplicitya3rd-orderIIRfilterwithatransferfunctionWecanimplementH(z)asacascadeoftwofiltersectionsasshownonthenextslide§8.4.1DirectFormIIRDigitalFilterStructures§8.4.1DirectFormIIRDigitalFilterStructuresThefiltersectionH1(z)canbeseentobeanFIRfilterandcanberealizedasshownright§8.4.1DirectFormIIRDigitalFilterStructuresThetime-domainrepresentationofH2(z)isgivenby Realizationoffollowsfromtheaboveequationandisshownontheright§8.4.1DirectFormIIRDigitalFilterStructuresAcascadeofthetwostructuresrealizingH1(z)andH2(z)leadstotherealizationofH(z)shownbelowandisknownastheDirectFormIstructure★★§8.4.1DirectFormIIRDigitalFilterStructuresNote:ThedirectformIstructureisnoncanonicasitemploys6delaystorealizea3rd-ordertransferfunctionAtransposeofthedirectformIstructureisshownontherightandiscalledthedirectformIstructure★§8.4.1DirectFormIIRDigitalFilterStructuresVariousothernoncanonicdirectformstructurescanbederivedbysimpleblockdiagrammanipulationsasshownbelow§8.4.1DirectFormIIRDigitalFilterStructures1Observeinthedirectformstructureshownright,thesignalvariableatnodesandarethesame,andhencethetwotopdelayscanbeshared§8.4.1DirectFormIIRDigitalFilterStructuresFollowingthesameargument,thebottomtwodelayscanbesharedSharingofalldelaysreducesthetotalnumberofdelaysto3resultinginacanonicrealizationshownonthenextslidealongwithitstransposestructureLikewise,thesignalvariablesatnodesandarethesame,permittingthesharingofthemiddletwodelays§8.4.1DirectFormIIRDigitalFilterStructuresDirectformrealizationsofanN-thorderIIRtransferfunctionshouldbeevident★★§8.4.2CascadeFormIIRDigitalFilterStructuresByexpressingthenumeratorandthedenominatorpolynomialsofthetransferfunctionasaproductofpolynomialsoflowerdegree,adigitalfiltercanberealizedasacascadeoflow-orderfiltersectionsConsider,forexample,H(z)=P(z)/D(z)expressedas§8.4.2CascadeFormIIRDigitalFilterStructuresExamplesofcascaderealizationsobtainedbydifferentpole-zeropairingsareshownbelow★★§8.4.2CascadeFormIIRDigitalFilterStructuresExamplesofcascaderealizationsobtainedbydifferentorderingofsectionsareshownbelow§8.4.2CascadeFormIIRDigitalFilterStructuresbasedonpole-zero-pairingsandorderingDuetofinitewordlengtheffects,eachsuchcascaderealizationbehavesdifferentlyfromothersTherearealtogetheratotalof36differentcascaderealizationsof§8.4.2CascadeFormIIRDigitalFilterStructuresUsually,thepolynomialsarefactoredintoaproductof1st-orderand2nd-orderpolynomials:Intheabove,forafirst-orderfactor★★§8.4.2CascadeFormIIRDigitalFilterStructuresConsiderthe3rd-ordertransferfunctionOnepossiblerealizationisshownbelow★§8.4.2CascadeFormIIRDigitalFilterStructuresExample-DirectformIIandcascadeformrealizationsof areshownonthenextslide§8.4.2CascadeFormIIRDigitalFilterStructuresDirectformIICascadeform§8.4.3ParallelFormIIRDigitalFilterStructuresApartial-fractionexpansionofthetransferfunctioninz-1leadstotheparallelformIstructureAssumingsimplepoles,thetransferfunctionH(z)canbeexpressedasIntheaboveforarealpole★★§8.4.3ParallelFormIIRDigitalFilterStructuresThetwobasicparallelrealizationsofa3rd-orderIIRtransferf

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论