版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter8DigitalFilterStructuresHeretheinput-outputrelationinvolvesafinitesumofproducts:§8.1IntroductionOntheotherhand,anFIRsystemcanbeimplementedusingtheconvolutionsumwhichisafinitesumofproducts:TheactualimplementationofanLTIdigitalfiltercanbeeitherinsoftwareorhardwareform,dependingonapplicationsIneithercase,thesignalvariablesandthefiltercoefficientscannotberepresentedwithfiniteprecision§8.1Introduction★§8.1.1BlockDiagramRepresentationFortheimplementationofanLTIdigitalfilter,theinput-outputrelationshipmustbedescribedbyavalidcomputationalalgorithmToillustratewhatwemeanbyacomputationalalgorithm,considerthecausalfirst-orderLTIdigitalfiltershownbelow§8.1.1BlockDiagramRepresentationThefilterisdescribedbythedifferenceequationy[n]=-d1y[n-1]+p0x[n]+p1x[n-1]Usingtheaboveequationwecancomputey[n]forn0knowingtheinitialconditiony[n-1]andtheinputx[n]forn-1§8.1.1BlockDiagramRepresentation
y[0]=-d1y[-1]+p0x[0]+p1x[-1]y[1]=-d1y[0]+p0x[1]+p1x[0]
y[2]=-d1y[1]+p0x[2]+p1x[1].…Wecancontinuethiscalculationforanyvalueofthetimeindexnwedesire§8.1.1BlockDiagramRepresentationEachstepofthecalculationrequiresaknowledgeofthepreviouslycalculatedvalueoftheoutputsample(delayedvalueoftheoutput),thepresentvalueoftheinputsample,andthepreviousvalueoftheinputsample(delayedvalueoftheinput)Asaresult,thefirst-orderdifferenceequationcanbeinterpretedasavalidcomputationalalgorithm§8.1.2BasicBuildingBlocksThecomputationalalgorithmofanLTIdigitalfiltercanbeconvenientlyrepresentedinblockdiagramformusingthebasicbuildingblocksshownbelowx[n]y[n]w[n]Ax[n]y[n]y[n]x[n]x[n]x[n]x[n]AdderUnitdelayMultiplierPick-offnode§8.1.2BasicBuildingBlocksAdvantagesofblockdiagramrepresentation(1)Easytowritedownthecomputationalalgorithmbyinspection(2)Easytoanalyzetheblockdiagramtodeterminetheexplicitrelationbetweentheoutputandinput★★√√§8.1.2BasicBuildingBlocks(3)Easytomanipulateablockdiagramtoderiveother“equivalent”blockdiagramsyieldingdifferentcomputationalalgorithms(4)Easytodeterminethehardwarerequirements(5)Easiertodevelopblockdiagramrepresentationsfromthetransferfunctiondirectly√√√§8.1.3AnalysisofBlockDiagramsCarriedoutbywritingdowntheexpressionsfortheoutputsignalsofeachadderasasumofitsinputsignals,anddevelopingasetofequationsrelatingthefilterinputandoutputsignalsintermsofallinternalsignalsEliminatingtheunwantedinternalvariablesthenresultsintheexpressionfortheoutputsignalasafunctionoftheinputsignalandthefilterparametersthatarethemultipliercoefficients★★§8.1.3AnalysisofBlockDiagramsTheoutputE(z)oftheadderisE(z)=X(z)+G2(z)Y(z)ButfromthefigureY(z)=G1(z)E(z)Example-Considerthesingle-loopfeedbackstructureshownbelow§8.1.3AnalysisofBlockDiagramsEliminatingE(z)fromtheprevioustwoequationswearriveat
[1-G1(z)G2(z)]Y(z)=G1(z)X(z)
whichleadsto§8.1.3AnalysisofBlockDiagramsExample-Analyzethecascadedlatticestructureshownbelowwherethez-dependenceofsignalvariablesarenotshownforbrevity§8.1.3AnalysisofBlockDiagramsTheoutputsignalsofthefouraddersaregivenbyW1=X-S2W2=W1-S1W3=S1-W2Y=W1-S2FromthefigureweobserveS2=z-1W3S1=z-1W2
§8.1.3AnalysisofBlockDiagramsSubstitutingthelasttworelationsinthefirstfourequationsweget
W1=X-z-1W3
W2=W1-z-1W2
W3=z-1W2+W2Y=W1+z-1
W3
FromthesecondequationwegetW2=W1/(1+z-1)andfromthethirdequationwegetW3=(+z-1)W2
§8.1.3AnalysisofBlockDiagramsCombiningthelasttwoequationswegetwefinallyarriveatSubstitutingtheaboveequationin§8.2EquivalentStructuresTwodigitalfilterstructuresaredefinedtobeequivalentiftheyhavethesametransferfunctionWedescribenextanumberofmethodsforthegenerationofequivalentstructuresHowever,afairlysimplewaytogenerateanequivalentstructurefromagivenrealizationisviathetransposeoperation★★§8.2EquivalentStructuresTransposeOperation(1)Reverseallpaths(2)Replacepick-offnodesbyadders,andviceversa(3)InterchangetheinputandoutputnodesAllothermethodsfordevelopingequivalentstructuresarebasedonaspecificalgorithmforeachstructure★★§8.2EquivalentStructuresThereareliterallyaninfinitenumberofequivalentstructuresrealizingthesametransferfunctionItisthusimpossibletodevelopallequivalentrealizationsInthiscoursewerestrictourattentiontoadiscussionofsomecommonlyusedstructures§8.2EquivalentStructuresUnderinfiniteprecisionarithmeticanygivenrealizationofadigitalfilterbehavesidenticallytoanyotherequivalentstructureHowever,inpractice,duetothefinitewordlengthlimitations,aspecificrealizationbehavestotallydifferentlyfromitsotherequivalentrealizations§8.2EquivalentStructuresHence,itisimportanttochooseastructurethathastheleastquantizationeffectswhenimplementedusingfiniteprecisionarithmeticOnewaytoarriveatsuchastructureistodeterminealargenumberofequivalentstructures,analyzethefinitewordlengtheffectsineachcase,andselecttheoneshowingtheleasteffects★★§8.2EquivalentStructuresIncertaincases,itispossibletodevelopastructurethatbyconstructionhastheleastquantizationeffectsWedeferthereviewofthesestructuresafteradiscussionoftheanalysisofquantizationeffectsHere,wereviewsomesimplerealizationsthatinmanyapplicationsarequiteadequate§8.3BasicFIRDigitalFilterStructures whichisapolynomialinz-1Inthetime-domaintheinput-outputrelationoftheaboveFIRfilterisgivenbyAcausalFIRfilteroforderNischaracterizedbyatransferfunctionH(z)givenby§8.3.1DirectFormFIRDigitalFilterStructuresAnFIRfilteroforderNischaracterizedbyN+1coefficientsand,ingeneral,requireN+1multipliersandNtwo-inputaddersStructuresinwhichthemultipliercoefficientsarepreciselythecoefficientsofthetransferfunctionarecalleddirectformstructures
★★§8.3.1DirectFormFIRDigitalFilterStructuresAdirectformrealizationofanFIRfiltercanbereadilydevelopedfromtheconvolutionsumdescriptionasindicatedbelowforN=4★★§8.3.1DirectFormFIRDigitalFilterStructures whichispreciselyoftheformoftheconvolutionsumdescriptionThedirectformstructureshownonthepreviousslideisalsoknownasatappeddelaylineoratransversalfilterAnanalysisofthisstructureyields§8.3.1DirectFormFIRDigitalFilterStructuresThetransposeofthedirectformstructureshownearlierisindicatedbelow★★§8.3.2CascadeFormFIRDigitalFilterStructuresAhigher-orderFIRtransferfunctioncanalsoberealizedasacascadeofsecond-orderFIRsectionsandpossiblyafirst-ordersectionTothisendweexpressH(z)aswherek=N/2ifNiseven,andk=(N+1)/2ifNisodd,with
2k=0§8.3.2CascadeFormFIRDigitalFilterStructuresAcascaderealizationforN=6isshownbelowEachsecond-ordersectionintheabovestructurecanalsoberealizedinthetransposeddirectform★★§8.3.3Linear-PhaseFIRStructuresThesymmetry(orantisymmetry)propertyofalinear-phaseFIRfiltercanbeexploitedtoreducethenumberofmultipliersintoalmosthalfofthatinthedirectformimplementationsConsideralength-7Type1FIRtransferfunctionwithasymmetricimpulseresponse§8.3.3Linear-PhaseFIRStructuresRewritingH(z)intheform weobtaintherealizationshownbelow★★§8.3.3Linear-PhaseFIRStructuresAsimilardecompositioncanbeappliedtoaType2FIRtransferfunctionForexample,alength-8Type2FIRtransferfunctioncanbeexpressedasThecorrespondingrealizationisshownonthenextslide§8.3.3Linear-PhaseFIRStructuresNote:TheType1linear-phasestructureforalength-7FIRfilterrequires4multipliers,whereasadirectformrealizationrequires7multipliers§8.3.3Linear-PhaseFIRStructuresNote:TheType2linear-phasestructureforalength-8FIRfilterrequires4multipliers,whereasadirectformrealizationrequires8multipliersSimilarsavingsoccursintherealizationofType3andType4linear-phaseFIRfilterswithantisymmetricimpulseresponses§8.4BasicIIRDigitalFilterStructuresThecausalIIRdigitalfiltersweareconcernedwithinthiscoursearecharacterizedbyarealrationaltransferfunctionofz-1or,equivalentlybyaconstantcoefficientdifferenceequationFromthedifferenceequationrepresentation,itcanbeseenthattherealizationofthecausalIIRdigitalfiltersrequiressomeformoffeedback§8.4BasicIIRDigitalFilterStructuresAnN-thorderIIRdigitaltransferfunctionischaracterizedby2N+1uniquecoefficients,andingeneral,requires2N+1multipliersand2Ntwo-inputaddersforimplementationDirectformIIRfilters:Filterstructuresinwhichthemultipliercoefficientsarepreciselythecoefficientsofthetransferfunction★★§8.4.1DirectFormIIRDigitalFilterStructuresConsiderforsimplicitya3rd-orderIIRfilterwithatransferfunctionWecanimplementH(z)asacascadeoftwofiltersectionsasshownonthenextslide§8.4.1DirectFormIIRDigitalFilterStructures§8.4.1DirectFormIIRDigitalFilterStructuresThefiltersectionH1(z)canbeseentobeanFIRfilterandcanberealizedasshownright§8.4.1DirectFormIIRDigitalFilterStructuresThetime-domainrepresentationofH2(z)isgivenby Realizationoffollowsfromtheaboveequationandisshownontheright§8.4.1DirectFormIIRDigitalFilterStructuresAcascadeofthetwostructuresrealizingH1(z)andH2(z)leadstotherealizationofH(z)shownbelowandisknownastheDirectFormIstructure★★§8.4.1DirectFormIIRDigitalFilterStructuresNote:ThedirectformIstructureisnoncanonicasitemploys6delaystorealizea3rd-ordertransferfunctionAtransposeofthedirectformIstructureisshownontherightandiscalledthedirectformIstructure★§8.4.1DirectFormIIRDigitalFilterStructuresVariousothernoncanonicdirectformstructurescanbederivedbysimpleblockdiagrammanipulationsasshownbelow§8.4.1DirectFormIIRDigitalFilterStructures1Observeinthedirectformstructureshownright,thesignalvariableatnodesandarethesame,andhencethetwotopdelayscanbeshared§8.4.1DirectFormIIRDigitalFilterStructuresFollowingthesameargument,thebottomtwodelayscanbesharedSharingofalldelaysreducesthetotalnumberofdelaysto3resultinginacanonicrealizationshownonthenextslidealongwithitstransposestructureLikewise,thesignalvariablesatnodesandarethesame,permittingthesharingofthemiddletwodelays§8.4.1DirectFormIIRDigitalFilterStructuresDirectformrealizationsofanN-thorderIIRtransferfunctionshouldbeevident★★§8.4.2CascadeFormIIRDigitalFilterStructuresByexpressingthenumeratorandthedenominatorpolynomialsofthetransferfunctionasaproductofpolynomialsoflowerdegree,adigitalfiltercanberealizedasacascadeoflow-orderfiltersectionsConsider,forexample,H(z)=P(z)/D(z)expressedas§8.4.2CascadeFormIIRDigitalFilterStructuresExamplesofcascaderealizationsobtainedbydifferentpole-zeropairingsareshownbelow★★§8.4.2CascadeFormIIRDigitalFilterStructuresExamplesofcascaderealizationsobtainedbydifferentorderingofsectionsareshownbelow§8.4.2CascadeFormIIRDigitalFilterStructuresbasedonpole-zero-pairingsandorderingDuetofinitewordlengtheffects,eachsuchcascaderealizationbehavesdifferentlyfromothersTherearealtogetheratotalof36differentcascaderealizationsof§8.4.2CascadeFormIIRDigitalFilterStructuresUsually,thepolynomialsarefactoredintoaproductof1st-orderand2nd-orderpolynomials:Intheabove,forafirst-orderfactor★★§8.4.2CascadeFormIIRDigitalFilterStructuresConsiderthe3rd-ordertransferfunctionOnepossiblerealizationisshownbelow★§8.4.2CascadeFormIIRDigitalFilterStructuresExample-DirectformIIandcascadeformrealizationsof areshownonthenextslide§8.4.2CascadeFormIIRDigitalFilterStructuresDirectformIICascadeform§8.4.3ParallelFormIIRDigitalFilterStructuresApartial-fractionexpansionofthetransferfunctioninz-1leadstotheparallelformIstructureAssumingsimplepoles,thetransferfunctionH(z)canbeexpressedasIntheaboveforarealpole★★§8.4.3ParallelFormIIRDigitalFilterStructuresThetwobasicparallelrealizationsofa3rd-orderIIRtransferf
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年深圳单招工业机器人专业高分突破密卷含答案
- 2026年青海单招财经类职业适应性测试题库含答案含经济常识
- 2026年大连单招机电一体化技术专业技能模拟卷含故障排除题
- 2026年旅游规划师路线面试题及目的地营销含答案
- 2026年银行信贷岗位面试问题详解与答案
- 2026年绩效考核专员绩效评估申诉处理流程含答案
- 2026年客服人员绩效考核及激励制度安排
- 2026年数据分析师面试知识点及问题集
- 2026年农业政策研究专家面试题集及答案
- 2026年人力资源入职管理专员笔试考试题集含答案
- 老年人糖尿病课件
- 航空附件相关知识培训课件
- 年末安全生产知识培训课件
- 南网综合能源公开招聘笔试题库2025
- 汉语水平考试HSK四级真题4-真题-无答案
- 银行金融消费者权益保护工作测试题及答案
- 2025年c2安全员考试题库
- GB/T 22080-2025网络安全技术信息安全管理体系要求
- 监理公司检查管理制度
- 国家开放大学《管理英语3》期末机考题库
- 氯碱行业企业安全生产隐患排查治理体系实施指南
评论
0/150
提交评论