(专题精选)初中数学相交线与平行线全集汇编_第1页
(专题精选)初中数学相交线与平行线全集汇编_第2页
(专题精选)初中数学相交线与平行线全集汇编_第3页
(专题精选)初中数学相交线与平行线全集汇编_第4页
(专题精选)初中数学相交线与平行线全集汇编_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(专题精选)初中数学相交线与平行线全集汇编一、选择题1.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5° B.75° C.50° D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.2.如图,已知,若,,,下列结论:①;②;③;④与互补;⑤,其中正确的有()A.2个 B.3个 C.4个 D.5个【答案】C【解析】【分析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;

∵AC⊥BC,CD⊥AB,

∴∠ACB=∠CDB=90°,

∴∠A+∠B=90°,∠3+∠B=90°,

∴∠A=∠3,故②正确;

∵AC∥DE,AC⊥BC,

∴DE⊥BC,

∴∠DEC=∠CDB=90°,

∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,

∴∠3=∠EDB,故③正确,④错误;

∵AC⊥BC,CD⊥AB,

∴∠ACB=∠CDA=90°,

∴∠A+∠B=90°,∠1+∠A=90°,

∴∠1=∠B,故⑤正确;

即正确的个数是4个,

故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.3.如图,下列能判定的条件有()个.(1);(2);(3);(4).A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵,∴AB∥CD,故(1)正确;∵,∴AD∥BC,故(2)不符合题意;∵,∴AB∥CD,故(3)正确;∵,∴AB∥CD,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.4.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是A.50° B.70° C.80° D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.如图,直线,,如果,,,那么点到直线的距离为()A. B. C. D.无法确定【答案】A【解析】【分析】根据点到直线的距离是指垂线段的长度,根据AB⊥AC,得出点C到直线AB的距离为AC.【详解】解:∵AB⊥AC,∴点C到直线AB的距离是指AC的长度,即等于3cm.

故选:A.【点睛】此题考查点到直线的距离,解题关键在于掌握点到直线的距离是指垂线段的长度,难度适中.7.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64° B.68° C.58° D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.8.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个 B.2个 C.3个 D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50° B.55° C.65° D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.10.如图,已知,直线分别交,于,两点,将一个含有角的直角三角尺按如图所示的方式放置(),若,则的度数是()A. B. C. D.【答案】B【解析】【分析】根据,可以计算(两直线平行,同位角相等),又由,从而得到的度数.【详解】解:∵,∴(两直线平行,同位角相等),又∵,,∴,故答案为B.【点睛】本题主要考查了两直线平行的性质.牢记知识点:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,在矩形中,,,若是上的一个动点,则的最小值是()A.16 B.15.2 C.15 D.14.8【答案】D【解析】【分析】根据题意,当PC⊥BD时,有最小值,由勾股定理求出BD的长度,由三角形的面积公式求出PC的长度,即可求出最小值.【详解】解:如图,当PC⊥BD时,有最小值,在矩形ABCD中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得,∴,在△BCD中,由三角形的面积公式,得,即,解得:,∴的最小值是:;故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P的位置,得到PC最短.13.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,

∵∠1=∠2,

∴∠2+∠3=90°,

∴∠2与∠3互余,

故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.14.已知的两边与的两边分别平行,且=20°,则∠β的度数为()A.20° B.160° C.20°或160° D.70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a∥b;∴∠1==20°,∵c∥d∴∠β=∠1=20°;如图2,∵a∥b;∴∠1==20°,∵c∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.15.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是(

)A.1个 B.2个 C.3个 D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.16.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个 B.4个 C.5个 D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.17.如图,下列判断:①若,则;②若,则:③若,则.其中,正确的个数是().A. B. C. D.【答案】D【解析】【分析】①根据证明四边形DEBF是平行四边形即可判断;②根据证明DC∥AB即可判断;③根据证明DC∥AB即可判断.【详解】解:如图,标出∠3,①∵,∴DC∥AB(内错角相等,两直线平行),∵是对顶角,∴,∴(等量替换),∴DE∥FB(同位角相等,两直线平行),∴四边形DEBF是平行四边形(两组对边分别平行),∴,故①正确;②∵是对顶角,∴,∴(等量替换),∴DE∥FB(同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵,∴∠D+∠DEB=180°,∴DC∥AB(同旁内角互补,两直线平行),∴(两直线平行,内错角相等);故②正确;③∵,∴DC∥AB(内错角相等,两直线平行),∴(两直线平行,内错角相等),又∵,∴,∴DE∥FB(同位角相等,两直线平行),∴(两直线平行,同位角相等),∵是对顶角,∴,∴(等量替换),故③正确.故D为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.18.如图,直线相交于点,则的大小是()A. B. C. D.【答案】A【解析】【分析】根据对顶角的性质,把的度数计算出来,再结合,即可得到答案.【详解】解:∵,∴(对顶角相等),又∵,∴,∴,故A为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断是对顶角是解题的关键.19.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110° B.120° C.140° D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.20.如图,一副三角板按如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论