版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是不同的直线,是不同的平面,有以下四个命题:①若,则②若,,则③若,,则④若,,则.其中真命题的序号为()A.①③ B.②③ C.①④ D.②④2.已知的展开式中,含项的系数为70,则实数a的值为()A.1 B.-1 C.2 D.-23.已知,则等于()A.-4 B.-2 C.1 D.24.已知原命题:已知,若,则,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为()A. B. C. D.5.已知三棱锥的所有顶点都在球的球面上,满足,,为球的直径,且,则点到底面的距离为A. B. C. D.6.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.7.设随机变量服从正态分布,若,则
=A. B. C. D.8.已知命题p:∀x∈R,2x>0;q:∃x0∈R,x+x0=-1.则下列命题为真命题的是()A.p∧q B.(┐p)∧(┐q) C.(┐p)∧q D.p∧(┐q)9.某公司在年的收入与支出情况如下表所示:收入(亿元)支出y(亿元)根据表中数据可得回归直线方程为,依此名计,如果年该公司的收入为亿元时,它的支出为()A.亿元 B.亿元 C.亿元 D.亿元10.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.411.在长方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.12.设随机变量,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位,则复数的实部为______.14.分别和两条异面直线相交的两条直线的位置关系是___________.15.若复数,,(为虚数单位)则实数__________.16.三棱锥V-ABC的底面ABC与侧面VAB都是边长为a的正三角形,则棱VC的长度的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为的正方体中,,,分别是棱、和所在直线上的动点:(1)求的取值范围:(2)若为面内的一点,且,,求的余弦值:(3)若、分别是所在正方形棱的中点,试问在棱上能否找到一点,使平面?若能,试确定点的位置,若不能,请说明理由.18.(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为.(Ⅰ)写出的直角坐标方程;(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.19.(12分)已知函数(为常数).(1)讨论函数的单调性;(2)当时,设的两个极值点,()恰为的零点,求的最小值.20.(12分)已知数列各项均为正数,,,.(1)若,①求的值;②猜想数列的通项公式,并用数学归纳法证明;(2)若,证明:当时,.21.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.22.(10分)已知数列{an+1﹣an}是首项为,公比为的等比数列,a1=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{(3n﹣1)•an}的前n项和Sn.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题意结合立体几何的结论逐一考查所给的说法是否正确即可.【详解】逐一考查所给的命题:①如图所示,正方体中,取平面为平面,平面,直线为,满足,,但是不满足,题中所给的命题错误;②由面面垂直的性质定理可知若,,则,题中所给的命题正确;③如图所示,正方体中,取平面为,直线为,直线为,满足,,但是,不满足,题中所给的命题错误;④由面面垂直的性质定理可知若,,则,题中所给的命题正确.综上可得:真命题的序号为②④.本题选择D选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.2、A【解析】
分析:由题意结合二项式展开式的通项公式得到关于a的方程,解方程即可求得实数a的值.详解:展开式的通项公式为:,由于,据此可知含项的系数为:,结合题意可知:,解得:.本题选择A选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3、D【解析】
首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【详解】因为f′(x)=1x+1f′(1),令x=1,可得f′(1)=1+1f′(1),∴f′(1)=﹣1,∴f′(x)=1x+1f′(1)=1x﹣4,当x=3,f′(3)=1.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.4、D【解析】
判断原命题的真假即可知逆否命题的真假,由原命题得出逆命题并判断真假,即可得否命题的真假。【详解】由题原命题:已知,若,则,为真命题,所以逆否命题也是真命题;逆命题为:已知,若,则,为真命题,所以否命题也是真命题。故选D.【点睛】本题考查四种命题之间的关系,解题的关键是掌握互为逆否的命题同真假,属于基础题。5、C【解析】∵三棱锥P-ABC的所有顶点都在球O的球面上,PA为球O的直径且PA=4,∴球心O是PA的中点,球半径R=OC=PA=2,过O作OD⊥平面ABC,垂足是D,∵△ABC满足AB=2,∠ACB=90°,∴D是AB中点,且AD=BD=CD=∴OD=∴点P到底面ABC的距离为d=2OD=2,故选C.点睛:本题考查点到平面的距离的求法,关键是分析出球心O到平面ABC的距离,找到的外接圆的圆心D即可有OD⊥平面ABC,求出OD即可求出点到底面的距离.6、D【解析】
先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D.【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7、B【解析】分析:根据正态分布图像可知,故它们中点即为对称轴.详解:由题可得:,故对称轴为故选B.点睛:考查正态分布的基本量和图像性质,属于基础题.8、D【解析】分析:分别判断p,q的真假即可.详解:指数函数的值域为(0,+∞),对任意x∈R,y=2x>0恒成立,故p为真命题;x2+x+1=2+>0恒成立,不存在x0∈R,使x+x0=-1成立,故q为假命题,则p∧q,┐p为假命题,┐q为真命题,┐p∧┐q,┐p∧q为假命题,p∧┐q为真命题.故选:D.点睛:本题以命题的真假判断与应用为载体,考查了指数函数的性质与二次函数方面的知识.9、B【解析】,,代入回归直线方程,,解得:,所以回归直线方程为:,当时,支出为亿元,故选B.10、B【解析】分析:利用空间中线线、线面、面面间的位置关系求解.详解:对于①:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;对于②:设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4可使条件满足,所以②正确;对于③:当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④:因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选B.点睛:本题考查命题真假的判断,解题时要认真审题,注意空间思维能力的培养.11、D【解析】
取CC1的中点F,连结DF,A1F,EF,推导出四边形BCEF是平行四边形,从而异面直线AE与A1D所成角即为相交直线DF与A1D所成角,由此能求出异面直线AE与A1D所成角的余弦值.【详解】取的中点.连接.因为为棱的中点,所以,所以四边形为平行四边形.所以.故异面直线与所成的角即为相交直线与所成的角.因为,所以.所以.即为直角三角形,从而.故选D【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12、B【解析】
根据,可以求出的值,利用二项分布的方差公式直接求出的值.【详解】解:,解得,,故选B.【点睛】本题考查了二项分布的方差公式,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据模长公式求出,即可求解.【详解】,复数的实部为.故答案为:.【点睛】本题考查复数的基本概念以及模长公式,属于基础题.14、相交或异面【解析】
根据异面直线的定义可知与两条异面直线相交的两条直线不可能平行,可得到位置关系.【详解】如下图所示:此时的位置关系为:相交如下图所示:此时的位置关系为:异面若平行,则与的四个交点,四点共面;此时共面,不符合异面直线的定义综上所述:的位置关系为相交或异面本题正确结果;相交或异面【点睛】本题考查空间中直线的位置关系的判断,属于基础题.15、【解析】
由题得,解方程即得解.【详解】由题得,所以.故答案为【点睛】本题主要考查复数模的性质和计算,意在考查学生对这些知识的理解掌握水平.16、【解析】分析:设的中点为,连接,由余弦定理可得,利用三角函数的有界性可得结果.详解:设的中点为,连接,则是二面角的平面角,可得,在三角形中由余弦定理可得,,即的取值范围是,为故答案为.点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)点M为的中点,理由见解析【解析】
(1)设,求出,利用余弦定理求解,然后求出的取值范围.
(2)设在,三边上的投影分别是,转化求出,即可得到它的余弦值.
(3)设与的交点为,连接,说明平面,过作于K,延长后交所在的直线于点M,则BM⊥平面.通过,求解即可.【详解】解:(1)设,则,
所以,
的取值范围为;
(2)解:设在,三边上的投影分别是,,,
则由于,.
,
,即,它的余弦值为
(3)解:设与的交点为.连接,则由以及,知平面,
于是面面,在面内过作于K,延长后交所在的直线于点M,则BM⊥平面,
在平面内,由,
知,又,∴.
这说明点M为的中点.【点睛】本题考查空间点线面距离的求法,直线与平面垂直的判定定理的应用,余弦定理的应用,考查转化思想以及计算能力.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先将两边同乘以可得,再利用,可得的直角坐标方程;(Ⅱ)先设的坐标,则,再利用二次函数的性质可得的最小值,进而可得的直角坐标.试题解析:(Ⅰ)由,得,从而有,所以.(Ⅱ)设,又,则,故当时,取最小值,此时点的直角坐标为.考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.19、(Ⅰ)当时,的单调递增区间为,单调递减区间为,当时,的单调递增区间为;(Ⅱ).【解析】试题分析:(1)先求函数导数,讨论导函数符号变化规律:当时,导函数不变号,故的单调递增区间为.当时,导函数符号由正变负,即单调递增区间为,单调递减区间减区间为,(2)先求导数得为方程的两根,再求导数得,因此,而由为的零点,得,两式相减得,即得,因此,从而,其中根据韦达定理确定自变量范围:因为又,所以试题解析:(1),当时,由解得,即当时,单调递增,由解得,即当时,单调递减,当时,,即在上单调递增,当时,故,即在上单调递增,所以当时,的单调递增区间为,单调递减区间减区间为,当时,的单调递增区间为.(2),则,所以的两根即为方程的两根.因为,所以,又因为为的零点,所以,两式相减得,得,而,所以令,由得因为,两边同时除以,得,因为,故,解得或,所以,设,所以,则在上是减函数,所以,即的最小值为.考点:利用导数求函数单调区间,利用导数求函数最值【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f′(x)>0,则y=f(x)在该区间为增函数;如果f′(x)<0,则y=f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.20、(1)①;;②(2)见证明【解析】
(1)①根据递推公式,代入求值即可;②观察已知的数列的前几项,根据其特征,先猜想其通项公式,之后应用数学归纳法证明即可得结果;(2)应用数学归纳法证明.【详解】(1)当时,即当时,当时,当时,②由此猜想:证明如下:①当时,,成立;②假设当时,猜想也成立,即,则当时,.即当时,猜想也成立.由①②得,猜想成立,即.()(2)当时,即当时,由知不等式成立.假设当时,命题也成立,即.由即当时,命题也成立.由①②得,原命题成立,即当时,.【点睛】该题考查的是数列的有关问题,涉及到的知识点有根据递推公式求数列的特定项,根据已知的数列的前几项猜想数列的通项公式,应用数学归纳法证明问题,属于中档题目.21、(1)26.5(2)①0.6826
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论