




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种 B.30种 C.40种 D.60种2.若复数是纯虚数,则的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设,则()A. B.10 C. D.1004.函数的零点所在的一个区间是()A. B. C. D.5.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法6.已知函数是定义在上的偶函数,且,若对任意的,都有成立,则不等式的解集为()A. B.C. D.7.在一次投篮训练中,某队员连续投篮两次.设命题是“第一次投中”,是“第二次投中”,则命题“两次都没有投中目标”可表示为A. B. C. D.8.不等式的解集是()A.或 B.C.或 D.9.如图,梯形中,∥,,,,将△沿对角线折起,设折起后点的位置为,使二面角为直二面角,给出下面四个命题:①;②三棱锥的体积为;③平面;④平面平面;其中正确命题的个数是()A.1 B.2 C.3 D.410.若复数满足,则在复数平面上对应的点()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线对称11.要将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则甲被分到班的概率为()A. B. C. D.12.已知函数,,则其导函数的图象大致是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知关于的不等式的解集为,则实数的取值范围.14.在复平面上,复数z对应的点为,则________.15.已知,,若是的充分条件,则实数的取值范围是______.16.对于三次函数,定义:设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”根据此发现,若函数,计算__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有6本不同的书:(1)全部借给5人,每人至少1本,共有多少种不同的借法?(2)全部借给3人,每人至少1本,共有多少种不同的借法?18.(12分)3名男生、2名女生站成一排照相:(1)两名女生都不站在两端,有多少不同的站法?(2)两名女生要相邻,有多少种不同的站法?19.(12分)已知函数有两个不同极值点,且.(Ⅰ)求实数的取值范围;(Ⅱ)若恒成立,求实数的取值范围.20.(12分)已知的内角所对的边分别为,且.(1)若,角,求角的值;(2)若的面积,,求的值.21.(12分)已知函数.(1)当时,讨论的单调性;(2)设,当时,若对任意,存在使,求实数取值.22.(10分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.2、C【解析】
由纯虚数的定义和三角恒等式可求得,根据二倍角公式求得;根据复数的几何意义可求得结果.【详解】为纯虚数,,即,,,,对应点的坐标为,位于第二象限.则的共轭复数在复平面内对应的点位于第三象限故选:.【点睛】本题考查复数对应点的坐标的问题的求解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.3、B【解析】
利用复数的除法运算化简为的形式,然后求得的表达式,进而求得.【详解】,,.故选B.【点睛】本小题主要考查复数的除法运算,考查复数的平方和模的运算,属于基础题.4、A【解析】分析:判断函数值,利用零点定理推出结果即可.详解:函数,可得:f(﹣1)=5>0,f(0)=3>0,f(1)=>0,f(2)=>0,f(3)=﹣,由零点定理可知,函数的零点在(2,3)内.故选A.点睛:本题考查零点存在定理的应用,考查计算能力.零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.5、D【解析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.6、D【解析】
构造函数,判断函数的单调性和奇偶性,根据其性质解不等式得到答案.【详解】对任意的,都有成立构造函数在上递增.是偶函数为奇函数,在上单调递增.当时:当时:故答案选D【点睛】本题考查了函数的奇偶性,单调性,解不等式,构造函数是解题的关键.7、D【解析】分析:结合课本知识点命题的否定和“且”联结的命题表示来解答详解:命题是“第一次投中”,则命题是“第一次没投中”同理可得命题是“第二次没投中”则命题“两次都没有投中目标”可表示为故选点睛:本题主要考查了,以及的概念,并理解为真时,,中至少有一个为真。8、D【解析】
先求解出不等式,然后用集合表示即可。【详解】解:,即,即,故不等式的解集是,故选D。【点睛】本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。9、C【解析】
取BD中点O,根据面面垂直性质定理得平面,再根据线面垂直判定与性质定理、面面垂直判定定理证得平面以及平面平面;利用锥体体积公式求三棱锥的体积,最后根据反证法说明不成立.【详解】因为,,所以为等腰直角三角形,因为∥,,所以,从而为等腰直角三角形,取BD中点O,连接,如图,因为二面角为直二面角,所以平面平面,因为为等腰直角三角形,所以平面平面,平面,因此平面,所以三棱锥的体积为,②正确;因为平面,平面,所以,因为,,平面,所以平面;即③正确;因为平面,平面;所以;由已知条件得,平面,因此平面,因为平面,所以平面平面;即④正确;如果,而由平面,平面,所以,因为,平面,所以平面;因为平面;即,与矛盾,所以①不正确;故选:C【点睛】本题考查面面垂直性质与判定定理、线面垂直判定与性质定理以及锥体体积公式,考查基本分析论证与求解能力,属中档题.10、A【解析】
由题意可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点Z1,Z2的关系即可得解.【详解】复数满足,可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点关于轴对称,故选A.【点睛】本题主要考查共轭复数的定义,复数与复平面内对应点间的关系,属于基础题.11、B【解析】
根据题意,先将四人分成三组,再分别分给三个班级即可求得总安排方法;若甲被安排到A班,则分甲单独一人安排到A班和甲与另外一人一起安排到A班两种情况讨论,即可确定甲被安排到A班的所有情况,即可求解.【详解】将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则将甲、乙、丙、丁名同学分成三组,人数分别为1,1,2;则共有种方法,分配给三个班级的所有方法有种;甲被分到A班,有两种情况:一,甲单独一人分到A班,则剩余两个班级分别为1人和2人,共有种;二,甲和另外一人分到A班,则剩余两个班级各1人,共有种;综上可知,甲被分到班的概率为,故选:B.【点睛】本题考查了排列组合问题的综合应用,分组时注意重复情况的出现,属于中档题.12、C【解析】试题分析:,为偶函数,当且时,或,所以选择C。考点:1.导数运算;2.函数图象。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:时,不等式为,恒成立,当时,有解得,综上有.考点:不等式恒成立问题,二次不等式的解集.14、【解析】
由已知可得z,再由复数模的计算公式求解.【详解】解:由已知可得,z=﹣2+i,则z+1=﹣1+i,∴|z+1|.故答案为:.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,是基础题.15、【解析】
对命题进行化简,将转化为等价命题,即可求解.【详解】又是的充分条件,即,它的等价命题是,解得【点睛】本题主要考查了四种命题的关系,注意原命题与逆否命题的真假相同是解题的关键.16、1【解析】分析:求出二阶导数,再求出的拐点,即对称点,利用对称性可求值.详解:,,由得,,即的图象关于点对称,∴,∴.故答案为1.点睛:本题考查导数的计算,考查新定义,解题关键是正确理解新概念,转化新定义.通过求出的拐点,得出对称中心,从而利用配对法求得函数值的和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1800;(2)540【解析】分析:(1)将6本书中某两本书合在一起组成5份,借给5人,即可得到答案;(2)将6本书分成三份有3种分法,第一种是一人4本,一人1本,一人1本;第二种是一人3本,一人2本,一人1本;第三种是每人各2本;然后再将分好的三份借给3人即可.详解:(1)将6本书中某两本书合在一起组成5份,借给5人,共有=1800种借法.(2)将6本书分成三份有3种分法.第一种是一人4本,一人1本,一人1本;第二种是一人3本,一人2本,一人1本;第三种是每人各2本;然后再将分好的三份借给3人,有=540种借法.点睛:分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分组三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.18、(1)(2)【解析】
(1)先选两个男生放在两端,剩余一个男生和两个女生全排列;(2)两名女生看成一个整体,然后和三名男生全排列,注意两个女生之间也要全排.【详解】解:(1)由已知得.(2)由已知得.【点睛】排列组合组合问题中,要注意一个原则:特殊元素优先排列,当优先元素的问题解决后,后面剩余的部分就比较容易排列组合.19、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)把函数有两个不同极值点转化为有两个不同的实数根,分类讨论,,时,值域情况,从而得到实数的取值范围;(Ⅱ)显然,恒成立,只需讨论的情况,由于,为方程的两个根,从而有,变形可得:所以要使恒成立等价于恒成立,令,利用导数讨论的值域即可。【详解】由题可得的定义域为,,函数有两个不同极值点等价于有两个不同的实数根,令,当时,,则在定义域内单调递增,不可能存在两个根使得,舍去;当时,,则在定义域内单调递增,不可能存在两个根使得,舍去;当时,令,解得:,令时,解得:,所以的增区间为,减区间为,则;由于当时,,当时,,所以要使由两个根,则,解得:;综述所述,实数的取值范围为(Ⅱ)(1)由于,所以当时,显然恒成立,下讨论的情况;(2)当时,由(I),为方程的两个根,从而有,可得:,,所以,要使恒成立等价于恒成立,即恒成立,即恒成立,令,,则,只要使即可,则,,再令,则,可知:在内单调递减,从而,(i)当时,,则,在内单调递增,所以,所以满足条件;(ii)当时,,当时,,由于在内单调递减,根据零点存在定理,可知存在唯一,使得,当时,,单调递增;当时,,单调递减,则,不满足恒成立,故不满足条件;综述所述,实数的取值范围为【点睛】本题主要考查利用导数研究函数单调性和极值,问题(Ⅱ)为极值点偏移问题,常见的处理方法是根据极值点满足的等式构造求证目标满足的等式,再把求证目标不等式归结为函数不等式来证明.20、(1)或.(2)【解析】
(1)根据正弦定理,求得,进而可求解角B的大小;(2)根据三角函数的基本关系式,求得,利用三角形的面积公式和余弦定理,即可求解。【详解】(1)根据正弦定理得,.,,或.(2),且,.,,.由正弦定理,得.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.其中在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21、(1)当时,函数在上单调递减;函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递减;函数在上单调递增;函数在上单调递减;(2).【解析】分析:(1)先求定义域,再对函数求导,,令,分,,,,四种情况考虑h(x)零点情况及正负情况,得函数f(x)的单调区间。(2)因为,由于(I)知,在上的最小值为,由题意可知“对任意,存在,使”等价于“在上的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投资理财服务合同范文
- 常年法律顾问合同细则
- 购房合同定金简易协议
- 江西丰城劳动合同范本
- 智能通风电器具产业发展挑战与对策考核试卷
- 机织服装生产中的生产流程标准化考核试卷
- 塑料加工中的耐冲击与抗跌落技术考核试卷
- 期货市场投资者行为分析服务考核试卷
- 抽纱刺绣工艺的数字化营销策略考核试卷
- 基于云计算的智能制造服务考核试卷
- 市政工程标准施工组织设计方案
- 马尔文粒度仪MS2000原理及应用
- 护理不良事件管理、上报制度及流程
- GB 9706.224-2021医用电气设备第2-24部分:输液泵和输液控制器的基本安全和基本性能专用要求
- 钢栈桥施工与方案
- 《艺术学概论》课件-第一章
- 子宫内膜异位症诊疗指南完整课件
- 动物寄生虫病学课件
- 人教版小学三年级下册数学应用题专项练习题40614
- 短视频抖音运营培训课程
- 生产安全事故应急预案管理办法知识点课件
评论
0/150
提交评论