版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.542.若,则等于()A. B. C. D.3.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件4.过点且与平行的直线与圆:交于,两点,则的长为()A. B. C. D.5.已知函数,则()A.函数的最大值为,其图象关于对称B.函数的最大值为2,其图象关于对称C.函数的最大值为,其图象关于直线对称D.函数的最大值为2,其图象关于直线对称6.随机抛掷一枚骰子,则所得骰子点数的期望为()A.0.6 B.1 C.3.5 D.27.已知是虚数单位,,则复数的共轭复数为()A. B. C. D.8.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线9.以下说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.“”是“”的充分不必要条件C.若命题存在,使得,则:对任意,都有D.若且为假命题,则均为假命题10.已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是()A.变量之间呈现负相关关系B.的值等于5C.变量之间的相关系数D.由表格数据知,该回归直线必过点11.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.12.命题:“关于x的方程的一个根大于,另一个根小于”;命题:“函数的定义域内为减函数”.若为真命题,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两个单位向量,的夹角为,,若,则_____.14.已知圆,圆,直线分别过圆心,且与圆相交于两点,与圆相交于两点,点是椭圆上任意一点,则的最小值为___________;15.如图,在中,,和分别是边和上一点,,将沿折起到点位置,则该四棱锥体积的最大值为_______.16.已知,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面为菱形,且,,,与相交于点.(1)求证:底面;(2)求直线与平面所成的角的值;(3)求平面与平面所成二面角的值.(用反三角函数表示)18.(12分)如图,已知三点,,在抛物线上,点,关于轴对称(点在第一象限),直线过抛物线的焦点.(Ⅰ)若的重心为,求直线的方程;(Ⅱ)设,的面积分别为,求的最小值.19.(12分)
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求的分布列及期望20.(12分)已知矩阵,.(1)求;(2)在平面直角坐标系中,求直线在对应的变换作用下所得直线的方程.21.(12分)设等差数列的前项和为,是等比数列,且,,,,是否存在,使,且?若存在,求的值.若不存在,则说明理由.22.(10分)给出如下两个命题:命题,;命题已知函数,且对任意,,,都有,求实数的取值范围,使命题为假,为真.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.考点:排列、组合的实际应用.2、D【解析】
中最大的数为,包含个数据,且个数据是连续的正整数,由此可得到的表示.【详解】因为,所以表示从连乘到,一共是个正整数连乘,所以.故选:D.【点睛】本题考查排列数的表示,难度较易.注意公式:的运用.3、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.4、D【解析】
由题意可得直线,求得圆心到直线距离,再由弦长公式即可求解【详解】设直线过点,可得,则直线圆的标准方程为,圆心为,圆心到直线距离,,故选D【点睛】本题考查用设一般方程求平行直线方程以及几何法求圆的弦长问题5、D【解析】分析:由诱导公式化简函数,再根据三角函数图象与性质,即可逐一判断各选项.详解:由诱导公式得,,排除A,C.将代入,得,为函数图象的对称轴,排除B.故选D.点睛:本题考查诱导公式与余弦函数的图象与性质,考查利用余弦函数的性质综合分析判断的能力.6、C【解析】
写出分布列,然后利用期望公式求解即可.【详解】抛掷骰子所得点数的分布列为123456所以.故选:.【点睛】本题考查离散型随机变量的分布列以及期望的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.7、A【解析】
先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【详解】因为,所以.故选A【点睛】本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.8、A【解析】由代入消去参数t得又所以表示线段。故选A9、D【解析】
根据逆否命题定义、命题否定的定义分别判断出正确;解方程得到解集和的包含关系,结合充要条件的判定可知正确;根据复合命题的真假性可知错误,由此可得结果.【详解】选项:根据逆否命题的定义可知:原命题的逆否命题为“若,则”,可知正确;选项:由,解得,因此“”是“”的充分不必要,可知正确;选项:根据命题的否定可知对任意,都有,可知正确;选项:由且为假命题,则至少有一个为假命题,因此不正确.本题正确选项:【点睛】本题考查了简易逻辑的判定方法、方程的解法,考查了推理能力与计算能力,属于基础题.10、C【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,负相关.对于B:根据表中数据:=1.可得=2.即,解得:m=3.对于C:相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D:由线性回归方程一定过(,),即(1,2).故选:C.点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.11、D【解析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解析】
通过分析命题为假命题只能真,于是可得到答案.【详解】命题真等价于即;由于的定义域为,故命题为假命题,而为真命题,说明真,故选B.【点睛】本题主要考查命题真假判断,意在考查学生的转化能力,逻辑推理能力,分析能力,难度中等.二、填空题:本题共4小题,每小题5分,共20分。13、2;【解析】
试题分析:由可得,即,故填2.考点:1.向量的运算.2.向量的数量积.14、【解析】
根据圆和椭圆的参数方程可假设出点坐标;根据共线、共线可得坐标;写出向量后,根据向量数量积运算法则可求得,从而可知当时,取得最小值,代入求得结果.【详解】由题意可设:,,则,,同理可得:当时,本题正确结果:【点睛】本题考查向量数量积的最值的求解问题,关键是能够灵活应用圆和椭圆的参数方程的形式,表示出所需的点的坐标,从而将问题转化为三角函数最值的求解问题.15、【解析】
根据题中条件,设,表示出四边形的面积,由题意得到平面时,四棱锥体积最大,此时,根据四棱锥的体积公式,表示出,用导数的方法求其最值即可.【详解】在中,由已知,,,所以设,四边形的面积为,当平面时,四棱锥体积最大,此时,且,故四棱锥体积为,,时,;时,,所以,当时,.故答案为【点睛】本题主要考查求几何体的体积,熟记体积公式,以及导数的方法研究函数的最值即可,属于常考题型.16、【解析】
根据排列数计算公式可求得,结合组合数的性质即可化简求值.【详解】根据排列数计算公式可得,,所以,化简可解得,则由组合数性质可得,故答案为:462.【点睛】本题考查了排列数公式的简单应用,组合数性质的综合应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解析】
(1)由已知中四棱锥P−ABCD的底面ABCD为菱形,且∠ABC=60°,PB=PD=AB=2,PA=PC,AC与BD相交于点O,根据平行四边形两条对角线互相平分及等腰三角形三线合一,结合线面垂直的判定定理,我们易得到结论;
(2)以O为坐标原点,建立坐标系,分别求出各顶点坐标,进而求出直线
PB的方向向量与平面PCD的法向量,代入线面夹角的向量法公式,即可求出答案;(3)求出平面的法向量,代入面面夹角的向量法公式,即可求出答案.【详解】(1)证明:因为ABCD为菱形,
所以O为AC,BD的中点
因为PB=PD,PA=PC,
所以PO⊥BD,PO⊥AC
所以PO⊥底面ABCD;
(2)解:因为ABCD为菱形,所以AC⊥BD,
建立如图所示空间直角坐标系
又∠ABC=60°,PA=AB=2
得,
所以则,
设平面PCD的法向量
有,所以,令
得,
,
直线与平面所成的角的值为;(3)设平面的法向量,因为
有,所以,令
得,,
由图知,平面与平面所成二面角为钝角,.【点睛】本题考查的知识点是用空间向量求直线与平面的夹角,直线与平面垂直的判定,直线与平面所成的角,其中选择合适的点及坐标轴方向,建立空间坐标系,将问题转化为一个向量问题是解答此类问题的关键.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)设A,P,Q三点的坐标,将重心表示出来,且A,P,Q在抛物线上,可解得A,P两点坐标,进而求得直线AP;(Ⅱ)设直线PQ和直线AP,进而用横坐标表示出,讨论求得最小值。【详解】(Ⅰ)设,,则,所以,所以,所以(Ⅱ)设由得所以即又设由得,所以所以所以即过定点所以所以当且仅当时等号成立所以的最小值为【点睛】本题主要考查抛物线的方程与性质、直线与抛物线的位置关系以及圆锥曲线中的最值问题,属于抛物线的综合题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.19、(Ⅰ);(Ⅱ)Eη=200×0.4+250×0.4+300×0.2=240(元).【解析】
解:(I)由A表示事件:“购买该商品的3位顾客中至少有1位采用1期付款”,知表示事件:“购买该商品的3位顾客中无人采用1期付款”.,;(II)η的可能取值为200元,250元,300元.P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).20、(1);(2).【解析】
分析:(1)直接根据逆矩阵公式计算即可(2)由,即解得,即.详解:(1)由题知,所以,根据逆矩阵公式,得.(2)设由上的任意一点在作用下得到上对应点.由,即解得,因为,所以,即.即直线的方程为.点睛:(1)逆矩阵计算公式是解第一问关键,要会掌握其运算公式(2)一直线在对应的变换作用下所得直线的方程计算不难,不要算错一般都可以解决.21、存在,.【解析】
由已知条件,可求出数列和通项公式,由,化简即可得出的值.【详解】由,得,,由,得,由,所以且为等差数列,则是公差,由所以,即得,所以,且.所以.【点睛】本题主要考查等差数列和等比数列的通项公式,以及数列前项和的定义.22、【解析】
判断命题的否定为真时,实数的取值范围,从而得到命题为真时实数的取值范围,化简不等式可知只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年黄冈道路客运驾驶员从业资格证考试题库
- 2024年潮州客运从业资格证考试模拟题
- 2024年长治大客车从业资格证考试
- 2024年黑龙江客运资格考试考题题库答案
- 2024年昆明客运驾驶员考试试卷题库
- 2024年江门道路运输客运从业资格证考试模拟试题
- 模拟量通道校验记录表
- 研究生团员个人年度总结5篇范文
- 青岛市第十五届职业技能大赛技术文件-家电维修
- 新生儿科跌倒坠床防范措施
- 实验五鱼体测量及描述
- 市值管理十大经典案例
- 马克思主义基本原理概论课程论文
- Thebestjobintheworld
- 最终版加气机使用说明书
- 危险化学品重大危险源辨识(GB18218-2018)
- 水库移民工作存在的问题及对策水库建设移民问题
- 班级文化建设的实践与研究课题方案doc
- 有色金属选矿厂工艺设计规范
- 用样方法调查草地中某种双子叶植物的种群密度实验设计[实验报告]
- 锅炉英语对照
评论
0/150
提交评论