2023年江苏省射阳县数学高二下期末学业质量监测试题含解析_第1页
2023年江苏省射阳县数学高二下期末学业质量监测试题含解析_第2页
2023年江苏省射阳县数学高二下期末学业质量监测试题含解析_第3页
2023年江苏省射阳县数学高二下期末学业质量监测试题含解析_第4页
2023年江苏省射阳县数学高二下期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则A. B. C. D.2.在等差数列中,若,,则()A. B.1 C. D.3.若直线:(为参数)经过坐标原点,则直线的斜率是A. B.C.1 D.24.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值5.已知定义在R上的函数f(x)的导函数为,(为自然对数的底数),且当时,,则()A.f(1)<f(0) B.f(2)>ef(0) C.f(3)>e3f(0) D.f(4)<e4f(0)6.函数在其定义域内可导,其图象如图所示,则导函数的图象可能为()A. B. C. D.7.设为中的三边长,且,则的取值范围是()A. B.C. D.8.函数有极值的充要条件是()A. B. C. D.9.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年10.已知函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.11.已知命题“,使得”是真命题,则实数的取值范围是()A. B. C. D.12.下列说法正确的是()A.“f(0)”是“函数

f(x)是奇函数”的充要条件B.若

p:,,则:,C.“若,则”的否命题是“若,则”D.若为假命题,则p,q均为假命题二、填空题:本题共4小题,每小题5分,共20分。13.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.14.数列的前n项和记为,则__________.15.某单位在名男职工和名女职工中,选取人参加一项活动,要求男女职工都有,则不同的选取方法总数为______.16.定义域为的奇函数满足:对,都有,且时,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.(1)根据题意,请将下面的列联表填写完整;选择“西游传说”选择“千古蝶恋”总计成年人未成年人总计(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.附参考公式与表:().0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82818.(12分)在平面直角坐标系中,点到直线:的距离比到点的距离大2.(1)求点的轨迹的方程;(2)请指出曲线的对称性,顶点和范围,并运用其方程说明理由.19.(12分)北京市政府为做好会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利元,求的分布列,并求出数学期望.20.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.21.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求证:.22.(10分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:求出函数的导数,由可求得.详解:函数的导数,由可得选D.点睛:本题考查函数的导函数的概念及应用,属基础题.2、C【解析】

运用等差数列的性质求得公差d,再运用通项公式解得首项即可.【详解】由题意知,所以.故选C.【点睛】本题考查等差数列的通项公式的运用,等差数列的性质,考查运算能力,属于基础题.3、D【解析】

先由参数方程消去参数,再由直线过原点,即可得出结果.【详解】直线方程消去参数,得:,经过原点,代入直线方程,解得:,所以,直线方程为:,斜率为2.故选D【点睛】本题主要考查直线的参数方程,熟记参数方程与普通方程的互化即可,属于基础题型.4、D【解析】

则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减5、C【解析】

构造新函数,求导后结合题意判断其单调性,然后比较大小【详解】令,,时,,则,在上单调递减即,,,,故选【点睛】本题主要考查了利用导数研究函数的单调性以及导数的运算,构造新函数有一定难度,然后运用导数判断其单调性,接着进行赋值来求函数值的大小,有一定难度6、C【解析】

函数的单调性确定的符号,即可求解,得到答案.【详解】由函数的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当时,函数单调递增,所以导数的符号是正,负,正,正,只有选项C符合题意.故选:C.【点睛】本题主要考查了函数的单调性与导数符号之间的关系,其中解答中由的图象看函数的单调性,得出导函数的符号是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、B【解析】

由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.8、C【解析】因为,所以,即,应选答案C.9、C【解析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】

根据奇函数的定义或性质求出,然后可求出导函数,得切线斜率,从而得切线方程【详解】∵是奇函数,∴,∴,,是奇函数,,,,切线方程为,即.故选B.【点睛】本题考查导数的几何意义,考查函数的奇偶性,本题难度一般.11、C【解析】

利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【点睛】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.12、C【解析】

根据四种命题之间的关系,对选项中的命题分析、判断即可.【详解】对于A,f(0)=0时,函数f(x)不一定是奇函数,如f(x)=x2,x∈R;函数f(x)是奇函数时,f(0)不一定等于零,如f(x),x≠0;是即不充分也不必要条件,A错误;对于B,命题p:,则¬p:∀x∈,x2﹣x﹣1≤0,∴B错误;对于C,若α,则sinα的否命题是“若α,则sinα”,∴C正确.对于D,若p∧q为假命题,则p,q至少有一假命题,∴D错误;故选C.【点睛】本题考查了命题真假的判断问题,涉及到奇函数的性质,特称命题的否定,原命题的否命题,复合命题与简单命题的关系等知识,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

利用点差法得到AB的斜率,结合抛物线定义可得结果.【详解】详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1)所以,则即故答案为2.【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点,分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率.14、【解析】试题分析:由可得:,所以,则数列是等比数列,首项为3,公比为3,所以。考点:数列求通项公式。15、.【解析】

在没有任何限制的条件下,减去全是女职工的选法种数可得出结果.【详解】由题意可知,全是女职工的选法种数为,因此,男女职工都有的选法种数为,故答案为.【点睛】本题考查组合问题,利用间接法求解能简化分类讨论,考查计算能力,属于中等题.16、2【解析】

根据是奇函数,有,再结合,推出,得到的最小正周期为8,再求解.【详解】因为定义域为的是奇函数,所以,又因为,所以,所以,即,所以的最小正周期为8,又因为时,,所以.故答案为:2【点睛】本题主要考查函数的奇偶性、周期性的应用,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)没有的把握认为选择哪个主题公园与年龄有关【解析】

(1)根据题干可直接填表;(2)用公式求出,进而判断与年龄有无关系。【详解】解:(1)根据题目中的数据,列出列联表如下:选择“西游传说”选择“千古蝶恋”总计成年人104050未成年人203050总计3070100(2)的观测值.因为,所以没有的把握认为选择哪个主题公园与年龄有关.【点睛】本题考查独立性检验,注意计算避免马虎出错。18、(1);(2)对称性:曲线关于轴对称;顶点:;范围:曲线在直线右侧,且右上方和右下方无限延伸.理由见解析【解析】

(1)设,根据题意列出等量关系,化简整理,即可得出结果;(2)根据由抛物线向右平移一个单位得到,结合抛物线的性质,即可得出结果.【详解】(1)由题意可得:动点到直线的距离与到的距离相等,设,则,化简整理,可得,所以点的轨迹的方程为;(2)由(1)得的方程为;即由抛物线向右平移一个单位得到;所以曲线也关于轴对称,顶点为,范围为,.【点睛】本题主要考查求轨迹方程,以及轨迹的性质,熟记轨迹方程的求法,以及抛物线的性质即可,属于常考题型.19、(1);(2)分布列见解析,期望为1.【解析】

(1)利用对立事件的概率计算该产品不能销售的概率值;(2)由题意知的可能取值为,,,1,160;计算对应的概率值,写出分布列,计算数学期望.【详解】(1)记“该产品不能销售”为事件,则(A),所以,该产品不能销售的概率为;(2)由已知,的可能取值为,,,1,160计算,,,,;所以的分布列为1160;所以均值为1.【点睛】本题主要考查了离散型随机变量的分布列与数学期望的应用问题,意在考查学生对这些知识的理解掌握水平.20、(1);(2)【解析】

(1)设等差数列的公差为,等比数列的公比为,运用通项公式,可得,进而得到所求通项公式;(2)由(1)求得,运用等差数列和等比数列的求和公式,即可得到数列和.【详解】(1)设等差数列的公差为,等比数列的公比为,因为,可得,所以,又由,所以,所以数列的通项公式为.(2)由题意知,则数列的前项和为.【点睛】本题主要考查了等差数列和等比数列的通项公式和求和公式的运用,以及数列的分组求和,其中解答中熟记等差、等比数列的通项公式和前n项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)见解析;(2)证明见解析【解析】

(1)由f(x)含有参数a,单调性和a的取值有关,通过分类讨论说明导函数的正负,进而得到结论;(2)法一:将已知变形,对a分类讨论研究的正负,当与时,通过单调性可直接说明,当时,可得g(x)的最大值为,利用导数解得结论.法二:分析时,且使得已知不成立;当时,利用分离变量法求解证明.【详解】(1),①当时,由得,得,所以在上单调递增;②当时,由得,解得,所以在上单调递增,在在上单调递减;(2)法一:由得(*),设,则,①当时,,所以在上单调递增,,可知且时,,,可知(*)式不成立;②当时,,所以在上单调递减,,可知(*)式成立;③当时,由得,所以在上单调递增,可知在上单调递减,所以,由(*)式得,设,则,所以在上单调递减,而,h(1)=1-2=-1<0,所以存在t,使得h(t)=0,由得;综上所述,可知.法二:由得(*),①当时,得,且时,,可知(*)式不成立;②当时,由(*)式得,即,设,则,设,则,所以在上单调递减,又,,所以,(**),当时,,得,所以在上递增,同理可知在上递减,所以,结合(**)式得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论