




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若输入,执行如图所示的程序框图,输出的()A.10 B.16 C.20 D.352.从1,2,3,4,5中不放回地依次选取2个数,记事件“第一次取到的是奇数”,事件“第二次取到的是奇数”,则()A. B. C. D.3.设全集为R,集合,,则A. B. C. D.4.已知,则下列结论中错误的是()A.B..C.D.5.空间四边形中,,,,点在线段上,且,点是的中点,则()A. B. C. D.6.如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.487.(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为A.1 B.2C.4 D.88.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.9.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.10.已知奇函数在上是单调函数,函数是其导函数,当时,,则使成立的的取值范围是()A. B. C. D.11.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.12.2017年1月我市某校高三年级1600名学生参加了全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A.120 B.160 C.200 D.240二、填空题:本题共4小题,每小题5分,共20分。13.正四面体的所有棱长都为2,则它的体积为________.14.已知等差数列的前项和为,,,则数列的前项和为__________.15.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.16.已知球O的半径为R,点A在东经120°和北纬60°处,同经度北纬15°处有一点B,球面上A,B两点的球面距离为___________;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,其中i为虚数单位.(1)若复数z是实数,求实数m的值;(2)若复数z是纯虚数,求实数m的值.18.(12分)(1)设是两个正实数,且,求证:;(2)已知是互不相等的非零实数,求证:三个方程,,中至少有一个方程有两个相异实根.19.(12分)设函数.(1)求的单调区间;(2)求使对恒成立的的取值范围.20.(12分)已知函数.(1)讨论函数的单调性;(2)对于任意正实数x,不等式恒成立,求实数k的取值范围.21.(12分)已知函数f(x)=x+,且此函数的图象过点(1,5).(1)求实数m的值并判断f(x)的奇偶性;(2)判断函数f(x)在[2,+∞)上的单调性,证明你的结论.22.(10分)已知椭圆:的离心率为,点,分别为椭圆的左右顶点,点在上,且面积的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)设为的左焦点,点在直线上,过作的垂线交椭圆于,两点.证明:直线平分线段.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
第一次循环,,第二次循环,,第三次循环,,结束循环,输出,故选B.2、A【解析】
先算出,然后套用公式,即可得到本题答案.【详解】由题,得表示“第一次和第二次都取到奇数”的概率,结果等于,又有,所以.故选:A【点睛】本题主要考查条件概率的计算,属基础题.3、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.4、C【解析】试题分析:,当时,,单调递减,同理当时,单调递增,,显然不等式有正数解(如,(当然可以证明时,)),即存在,使,因此C错误.考点:存在性量词与全称量词,导数与函数的最值、函数的单调性.5、C【解析】分析:由空间向量加法法则得到,由此能求出结果.详解:由题空间四边形中,,,,点在线段上,且,点是的中点,则故选C.点睛:本题考查向量的求法,考查空间向量加法法则等基础知识,考查运算求解能力,考查数形结合思想,是基础题.6、B【解析】解:分三类:种两种花有种种法;种三种花有2种种法;种四种花有种种法.共有2++=1.故选B7、C【解析】设公差为,,,联立解得,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则.8、C【解析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.9、C【解析】
先将队得分高于队得分的情况列举出来,然后进行概率计算.【详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【点睛】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.10、A【解析】
将不等式变形,并构造函数,利用导函数可判断在时的取值情况;根据奇函数性质,即可判断当时的符号,进而得解.【详解】当时,,即;令,则,由题意可知,即在时单调递减,且,所以当时,,由于此时,则不合题意;当时,,由于此时,则不合题意;由以上可知时,而是上的奇函数,则当时,恒成立,所以使成立的的取值范围为,故选:A.【点睛】本题考查了导数与函数单调性的关系,利用构造函数法分析函数单调性,奇函数性质解不等式,属于中档题.11、D【解析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.12、C【解析】结合正态分布图象的性质可得:此次期末联考中成绩不低于120分的学生人数约为.选C.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.14、【解析】
由,列出关于首项为,公差为的方程组,解方程求得,可得,利用等比数列的求和公式可得结果.【详解】设等差数列的首项为,公差为,则解得,所以,所以,所以是以2为首项,16为公比的等比数列,所以数列的前项和为,故答案为.【点睛】本题主要考查等差数列的通项公式以及等比数列的求和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.15、1【解析】
由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16、;【解析】
根据纬度差可确定,根据扇形弧长公式可求得所求距离.【详解】在北纬,在北纬,且均位于东经两点的球面距离为:本题正确结果:【点睛】本题考查球面距离的求解问题,关键是能够通过纬度确定扇形圆心角的大小,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)由实数定义可知虚部为零,由此构造方程求得结果;(2)由纯虚数定义可知实部为零且虚部不为零,由此构造方程求得结果.【详解】(1)令,解得:或当或时,复数是实数(2)令,解得:或又,即:且当时,复数是纯虚数【点睛】本题考查根据复数的类型求解参数值的问题,关键是熟练掌握实数和纯虚数的定义;易错点是在复数为纯虚数时,忽略的要求,造成求解错误.18、(1)见解析;(2)见解析【解析】
(1)先证明,再在两边同时乘以正数(a+b),不等式即得证;(2)利用反证法证明即可.【详解】(1)证明:∵,∴,∴,∴,而均为正数,∴,∴,∴成立.(2)证明:假设三个方程中都没有两个相异实根,则,,.相加有,.①则,与由题意、、互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.【点睛】本题主要考查不等式的证明,考查反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)见解析;(2)【解析】
(1)求导后得,再对分三种情况讨论可得;(2)先由,解得,从而由(1)可得在上为增函数,再将恒成立转化为可解得.【详解】(1)因为,其中,所以.所以,时,所以的单调递增区间为,单调递减区间为;时,所以的单调递减区间为;时,所以的单调递增区间为,单调递减区间为;(2)由题意得,即.由(1)知在内单调递增,要使对恒成立.只要解得.故的取值范围是.【点睛】本题考查了利用导数求函数的单调区间,用导数研究不等式恒成立问题,属中档题.20、(1)在上单调递减,在上单调递增(2)【解析】
(1)利用导数的正负即可求出单调区间;(2)分离参数,构造函数,求出函数的最小值即可;【详解】(1)因为.所以,令,得,当时,;当时,所以函数在上单调递减,在上单调递增.(2)由于,恒成立,所以.构造函数,所以.令,解得,当时,,当时,.所以函数在点处取得最小值,即.因此所求k的取值范围是.【点睛】本题主要考查了利用导数研究函数的单调性以及不等式的恒成立问题,考查计算能力和分析问题的能力,以及转化思想,属于中档题.21、(1)m=1,奇函数;(2)f(x)在[2,+∞)上单调递增,证明见解析.【解析】
试题分析:(1)函数图象过点(1,5)将此点代入函数关系式求出m的值即可,因为函数定义域关于原点对称,需要判断函数是否满足关系式或者.满足前者为偶函数,满足后者为奇函数,否则不具有奇偶性.此题也可以将看做与两个函数的和,由的奇偶性判断出的奇偶性.(2)利用函数单调性的定义式:区间上的时,的正负来确定函数在区间上的单调性.试题解析:(1)(1)∵f(x)过点(1,5),∴1+m=5⇒m=1.对于f(x)=x+,∵x≠2,∴f(x)的定义域为(-∞,2)∪(2,+∞),关于原点对称.∴f(-x)=-x+=-f(x).∴f(x)为奇函数.另解:,,定义域均与定义域相同,因为为奇函数,因此可以得出也为奇函数.(2)证明:设x1,x2∈[2,+∞)且x1<x2,则f(x1)-f(x2)=x1+-x2-=(x1-x2)+=.∵x1,x2∈[2,+∞)且x1<x2,∴x1-x2<2,x1x2>1,x1x2>2.∴f(x1)-f(x2)<2.∴f(x)在[2,+∞)上单调递增.考点:1、求函数表达式;2、证明函数的奇偶性;3、证明函数的单调性.22、(Ⅰ);(Ⅱ)证明见解析.【解析】分析:(1)由题意可知,,结合,即可求得椭圆方程.(2)由题意设,,,线段的中点.则,①易知平分线段;②,,因点,在椭圆上,根据点差法整理得,所以,直线平分线段.详解:解:(Ⅰ)由椭圆的性质知当点位于短轴顶点时面积最大.∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版茶叶品牌推广代理服务合同规范
- 辽宁省葫芦岛市第一中学2025届物理高二第二学期期末学业质量监测模拟试题含解析
- 2025年度贵金属库房托管与安全保障合同
- 二零二五年度地下管网安装劳务分包合同城市基础设施
- 2025版办公室装修合同(含智能家居系统)升级版
- 二零二五年POS机租赁与移动支付业务合作合同
- 2025年航空机场保洁托管服务合同标准
- 2025版新能源发电设备采购预付款合同示范
- 2025版建筑原材料集中采购合同范本
- 二零二五年度残疾人康复辅助器具生产与销售合同
- 《义务教育道德与法治课程标准》解读
- 2025年复合膜袋项目可行性研究报告
- 学校总务后勤管理经验交流材料
- 2025年非全日制劳动合同模板
- 滴滴出行财务管理案例分析
- 离职赔偿协商协议书(2025年)
- 2024年度半导体生产工人劳动合同范本3篇
- 基本公共卫生服务项目培训
- 2025三会一课工作学习计划
- 2024年广东血液净化护理知识竞赛考试题库(含答案)
- 基层供电所安全课件
评论
0/150
提交评论