版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知三边,,的长都是整数,,如果,则符合条件的三角形的个数是()A. B. C. D.2.已知中,若,则的值为()A.2 B.3 C.4 D.53.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,19岁的世界围棋第一人柯洁0:3不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的2600男性中,有1560人持反对意见,2400名女性中,有1118人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是()A.分层抽样 B.回归分析 C.独立性检验 D.频率分布直方图5.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.26.若一圆柱的侧面积等于其表面积的,则该圆柱的母线长与底面半径之比为()A.1:1 B.2:1 C.3:1 D.4:17.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为A.0.24 B.0.26 C.0.288 D.0.2928.设,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.函数的图象过原点且它的导函数的图象是如图所示的一条直线,则的图象的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.双曲线的左焦点,过点作倾斜角为的直线与圆相交的弦长为,则椭圆C的离心率为()A. B. C. D.11.从1、2、3、4、5、6中任取两个数,事件:取到两数之和为偶数,事件:取到两数均为偶数,则()A. B. C. D.12.已知函数的导函数的图像如图所示,则()A.有极小值,但无极大值 B.既有极小值,也有极大值C.有极大值,但无极小值 D.既无极小值,也无极大值二、填空题:本题共4小题,每小题5分,共20分。13.已知点在直线(为参数)上,点为曲线(为参数)上的动点,则的最小值为________________.14.集合中所有3个元素的子集的元素和为__________.15.曲线在点处的切线方程为___________.16.是正四棱锥,是正方体,其中,,则到平面的距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:温度x/℃212324272932产卵数y/个61120275777经计算得:,,线性回归模型的残差平方和,,其中分别为观测数据中的温度和产卵数,(1)若用线性回归模型,求y关于x的回归方程(精确到0.1);(2)若用非线性回归模型求得y关于x的回归方程为,且相关指数.①试与1中的回归模型相比,用说明哪种模型的拟合效果更好.②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)附:一组数据其回归直线的斜率和截距的最小二乘估计为,;相关指数.18.(12分)某工厂为检验车间一生产线工作是否正常,现从生产线中随机抽取一批零件样本,测量它们的尺寸(单位:)并绘成频率分布直方图,如图所示.根据长期生产经验,可以认为这条生产线正常状态下生产的零件尺寸服从正态分布,其中近似为零件样本平均数,近似为零件样本方差.(1)求这批零件样本的和的值(同一组中的数据用该组区间的中点值作代表);(2)假设生产状态正常,求;(3)若从生产线中任取一零件,测量其尺寸为,根据原则判断该生产线是否正常?附:;若,则,,.19.(12分)如图,是圆锥的顶点,是底面圆的一条直径,是一条半径.且,已知该圆锥的侧面展开图是一个面积为的半圆面.(1)求该圆锥的体积:(2)求异面直线与所成角的大小.20.(12分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.21.(12分)若关于的不等式在实数范围内有解.(1)求实数的取值范围;(2)若实数的最大值为,且正实数满足,求证:.22.(10分)设函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)讨论函数的单调性.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据题意,可取的值为1、2、3、…25,由三角形的三边关系,有,对分情况讨论,分析可得可取的情况,即可得这种情况下符合条件的三角形的个数,由分类计数原理,结合等差数列的前项和公式,计算可得答案.【详解】解:根据题意,可取的值为1、2、3、…25,
根据三角形的三边关系,有,
当时,有25≤<26,则=25,有1种情况,
当时,有25≤<27,则=25、26,有2种情况,
当时,有25≤<28,则=25、26、27,有3种情况,
当时,有25≤<29,则=25、26、27、28,有4种情况,
…
当时,有有25≤<50,则=25、26、27、28…49,有25种情况,
则符合条件的三角形共有1+2+3+4+…+25=;
故选:D.【点睛】本题考查分类计数原理的运用,涉及三角形三边的关系,关键是发现变化时,符合条件的三角形个数的变化规律.2、A【解析】
根据利用二项展开式的通项公式、二项式系数的性质、以及,即可求得的值,得到答案.【详解】由题意,二项式,又由,所以,其中,由,可得:,即,即,解得,故选A.【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.3、B【解析】四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,故选择B.4、C【解析】
根据“性别”以及“反对与支持”这两种要素,符合2×2,从而可得出统计方法。【详解】本题考查“性别”对判断“人机大战是人类的胜利”这两个变量是否有关系,符合独立性检验的基本思想,因此,该题所选择的统计方法是独立性检验,故选:C.【点睛】本题考查独立性检验适用的基本情形,熟悉独立性检验的基本思想是解本题的概念,考查对概念的理解,属于基础题。5、C【解析】
根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.【点睛】本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.6、B【解析】
设这个圆柱的母线长为,底面半径为,根据已知条件列等式,化简可得答案.【详解】设这个圆柱的母线长为,底面半径为,则,化简得,即,故选:B【点睛】本题考查了圆柱的侧面积公式,考查了圆柱的表面积公式,属于基础题.7、C【解析】
首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率.【详解】因为摸一次球,是白球的概率是,不是白球的概率是,所以,故选C.【点睛】本题考查有放回问题的概率计算,难度一般.8、C【解析】
先由直线与平行,求出的范围,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与平行,所以,解得或,又当时,与重合,不满足题意,舍去;所以;由时,与分别为,,显然平行;因此“”是“直线与平行”的充要条件;故选C【点睛】本题主要考查由直线平行求参数,以及充分条件与必要条件的判定,熟记概念即可,属于常考题型.9、A【解析】
设,则,由图可知,从而可得顶点在第一象限.【详解】因为函数的图象过原点,所以可设,,由图可知,,则函数的顶点在第一象限,故选A.【点睛】本题主要考查导数公式的应用,考查了直线与二次函数的图象与性质,属于中档题.10、B【解析】
求出直线方程,利用过过点作倾斜角为的直线与圆相交的弦长为列出方程求解即可.【详解】双曲线的左焦点过点作倾斜角为的直线与圆相交的弦长为,可得:,可得:则双曲线的离心率为:故选:B.【点睛】本题考查双曲线的简单性质的应用,直线与圆的位置关系的应用,考查离心率的求法,考查计算能力.11、D【解析】
根据条件概率公式可得解.【详解】事件分为两种情况:两个均为奇数和两个数均为偶数,所以,,由条件概率可得:,故选D.【点睛】本题考查条件概率,属于基础题.12、A【解析】
通过导函数大于0原函数为增函数,导函数小于0原函数为减函数判断函数的增减区间,从而确定函数的极值.【详解】由导函数图像可知:导函数在上小于0,于是原函数在上单调递减,在上大于等于0,于是原函数在上单调递增,所以原函数在处取得极小值,无极大值,故选A.【点睛】本题主要考查导函数与原函数的联系,极值的相关概念,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求出直线的普通方程,再求出点到直线的距离,再利用三角函数的性质求出|MN|的最小值.【详解】由题得直线方程为,由题意,点到直线的距离,∴.故答案为:【点睛】本题主要考查参数方程与普通方程的互化,考查点到直线的距离的最值的求法和三角函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解析】
集合A中所有元素被选取了次,可得集合中所有3个元素的子集的元素和为即可得结果.【详解】集合中所有元素被选取了次,∴集合中所有3个元素的子集的元素和为,故答案为.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.15、【解析】
求得的导数,可得切线的斜率和切点,由点斜式方程可得所求切线方程.【详解】解:的导数为,所以,即曲线在处的切线的斜率为1,即切点为,则切线方程为,即故答案为:.【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,以及方程思想和运算能力,属于基础题.16、【解析】
以为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量,的坐标,利用距离公式,即可得到结论.【详解】解:以为轴,为轴,为轴建立空间直角坐标系,
设平面的法向量是,
,
∴由,可得
取得,
,
∴到平面的距离.故答案为:.【点睛】本题考查点到平面的距离,考查向量知识的运用,考查学生的计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①用非线性回归模型拟合效果更好;②190个【解析】
(1)求出、后代入公式直接计算得、,即可得解;(2)求出线性回归模型的相关指数,与比较即可得解;(3)直接把代入,计算即可得解.【详解】(1)由题意,则,,,,y关于x的线性回归方程为.(2)①对于线性回归模型,,,相关指数为因为,所以用非线性回归模型拟合效果更好.②当,时(个)所以温度为时,该种药用昆虫的产卵数估计为190个.【点睛】本题考查了线性回归方程的求解、相关指数的应用以及非线性回归方程的应用,考查了计算能力,属于中档题.18、(1)75,110;(2)0.8185;(3)该生产线工作不正常.【解析】分析:(1)取每组区间的中点,对应的频率为,根据公式,,计算样本的和的值.(2)由正态分布曲线的性质,分别计算和,就可求出的值.(3)由题可知,零件尺寸服从正态分布时认为这条生产线工作正常,根据原,,,生产线工作不正常.详解:解:(1).;(2)由(1)知,.从而,,∴.(3)∵,,∴.∵,小概率事件发生了,∴该生产线工作不正常.点睛:本题考查频率分布直方图的应用,均值和方差的求法,考查正态分布和概率的计算,考查运算求解能力、数据处理能力、分类与整合思想.19、(1)(2)【解析】
(1)运用圆锥的体积公式求解;(2)建立空间直角坐标系,运用空间向量的夹角公式求解.【详解】解:(1)设该圆锥的母线长为,底面圆半径为,高为,由题意,∴,底面圆周长,∴,∴,因此,该圆锥的体积;(2)如图所示,取弧的中点,则,因为垂直于底面,所以、、两两垂直以为轴,为轴,为轴建立空间直角坐标系,计算得,,,,所以,,设与所成角的大小为,则,所以,即异面直线与所成角的大小为.【点睛】本题考查圆锥的体积和异面直线所成的角,属于基础题.20、(Ⅰ)最大值为,最小值为.(Ⅱ)最大值为,最小值为.【解析】
(Ⅰ)切点在函数上,也在切线方程为上,得到一个式子,切线的斜率等于曲线在的导数,得到另外一个式子,联立可求实数,的值;(Ⅱ)函数在闭区间的最值在极值点或者端点处取得,通过比较大小可得最大值和最小值.【详解】解:(Ⅰ),∵曲线在处的切线方程为,∴解得,.(Ⅱ)由(Ⅰ)知,,则,令,解得,∴在上单调递减,在上单调递增,又,,,∴在区间上的最大值为,最小值为.【点睛】本题主要考查导函数与切线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚宴布置服务合同
- 小学学生创新能力提升方案
- 企业投资发展协议
- 2024年室内装修设计服务协议范本
- 2024年建筑机械租赁及承包协议样本
- 城市建设新项目启动仪式方案
- 借壳上市评估报告协议
- 2024年中小企业融资抵押协议示例
- 材料供应买卖协议2024
- 广告分销合同
- 零工市场(驿站)运营管理投标方案(技术方案)
- 2024-2025学年小学信息技术(信息科技)四年级下册浙教版(2023)教学设计合集
- 旅游纸质合同模板
- 2024年新人教版三年级数学上册《教材练习12练习十二(附答案)》教学课件
- 全国食品安全宣传周诚信尚俭共享食安食品安全课件
- 部编版五年级上册快乐读书吧练习题含答案
- 飞机维修计划与调度管理考核试卷
- 2024年石家庄市长安区四年级数学第一学期期末复习检测试题含解析
- 2024年中小学“1530”安全教育实施方案
- 生猪屠宰兽医卫生人员考试题库答案(414道)
- 2024-2030年中国高纯锗 (HPGE) 辐射探测器行业运营前景及发展现状调研报告
评论
0/150
提交评论