




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l、直线m和平面,它们的位置关系同时满足以下三个条件:①;②;③l与m是互相垂直的异面直线若P是平面上的动点,且到l、m的距离相等,则点P的轨迹为()A.直线 B.椭圆 C.抛物线 D.双曲线2.已知函数f(x)=ex(3x-1)-ax+a(a<1),若有且仅有两个整数xi(i=1,A.[-2e,1) B.[73e2,13.已知函数fx=xlnx-x+2a,若函数y=fx与函数A.-∞,1 B.12,1 C.1,4.函数f(x)与它的导函数f'(x)的大致图象如图所示,设g(x)=f(x)exA.15 B.25 C.35.已定义在上的函数无极值点,且对任意都有,若函数在上与具有相同的单调性,则实数的取值范围为()A. B. C. D.6.已知抛物线的焦点为,过的直线交抛物线于两点(在轴上方),延长交抛物线的准线于点,若,,则抛物线的方程为()A. B. C. D.7.已知复数满足方程,复数的实部与虚部和为,则实数()A. B. C. D.8.指数函数是增函数,而是指数函数,所以是增函数,关于上面推理正确的说法是()A.推理的形式错误 B.大前提是错误的 C.小前提是错误的 D.结论是真确的9.若直线l:过点,当取最小值时直线l的斜率为()A.2 B. C. D.210.由曲线和直线,,()所围成图形(阴影部分)的面积的最小值为().A. B. C. D.11.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有()A.180种 B.150种 C.96种 D.114种12.函数(,e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数是定义在上的奇函数,对任意的,满足,且当时,,则__________.14.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).15.的展开式中项的系数为_____.16.已知圆:的两焦点为,,点满足,则的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左焦点为,右顶点为,上顶点为,,(为坐标原点).(1)求椭圆的方程;(2)定义:曲线在点处的切线方程为.若抛物线上存在点(不与原点重合)处的切线交椭圆于、两点,线段的中点为.直线与过点且平行于轴的直线的交点为,证明:点必在定直线上.18.(12分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.19.(12分)已知函数,若定义域内存在实数x,满足,则称为“局部奇函数.(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由(2)设是定义在上的“局部奇函数”,求实数m的取值范围.20.(12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:喜欢盲拧不喜欢盲拧总计男22▲30女▲12▲总计▲▲50表1并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:成功完成时间(分钟)[0,10)[10,20)[20,30)[30,40]人数101055表2(1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替);(3)现从表2中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为,求的分布列及数学期望.附参考公式及数据:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)函数.当时,求函数的极值;若,设,若存在,使得成立,求实数a的取值范围.22.(10分)定义:在等式中,把,,,…,叫做三项式的次系数列(如三项式的1次系数列是1,1,1).(1)填空:三项式的2次系数列是_______________;三项式的3次系数列是_______________;(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示(无须证明);(3)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
作出直线m在平面α内的射影直线n,假设l与n垂直,建立坐标系,求出P点轨迹即可得出答案.【详解】解:设直线m在平面α的射影为直线n,则l与n相交,不妨设l与n垂直,设直线m与平面α的距离为d,在平面α内,以l,n为x轴,y轴建立平面坐标系,则P到直线l的距离为|y|,P到直线n的距离为|x|,∴P到直线m的距离为,∴|y|,即y2﹣x2=d2,∴P点轨迹为双曲线.故选:D.【点睛】本题考查空间线面位置关系、轨迹方程,考查点到直线的距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2、D【解析】
设g(x)=ex(3x﹣1),h(x)=ax﹣a,对g(x)求导,将问题转化为存在2个整数xi使得g(xi)在直线h(x)=ax﹣a的下方,求导数可得函数的极值,解g(﹣1)﹣h(﹣1)<0,g(﹣2)﹣h(﹣2)≥0,求得a的取值范围.【详解】设g(x)=ex(3x﹣1),h(x)=ax﹣a,则g′(x)=ex(3x+2),∴x∈(﹣∞,﹣23),g′(x)<0,g(xx∈(﹣23,+∞),g′(x)>0,g(x∴x=﹣23,取最小值-∴g(0)=﹣1<﹣a=h(0),g(1)﹣h(1)=2e>0,直线h(x)=ax﹣a恒过定点(1,0)且斜率为a,∴g(﹣1)﹣h(﹣1)=﹣4e﹣1+2a<0,∴a<2eg(﹣2)=﹣7e由g(﹣2)﹣h(﹣2)≥0,解得:a≥73故答案为[73故选D.【点睛】本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.3、B【解析】
由题意首先确定函数fx的单调性和值域,然后结合题意确定实数a的取值范围即可【详解】由函数的解析式可得:f'x在区间0,1上,f'x在区间1,+∞上,f'x易知当x→+∞时,fx→+∞,且故函数fx的值域为2a-1,+∞函数y=fx与函数y=f则函数fx在区间2a-1,+∞上的值域为2a-1,+∞结合函数的定义域和函数的单调性可得:0<2a-1≤1,解得:12故实数a的取值范围是12本题选择B选项.【点睛】本题主要考查导数研究函数的单调性,导数研究函数的值域,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.4、B【解析】
结合图象可得到f'(x)-f(x)<0成立的x的取值范围,从而可得到g(x)【详解】由图象可知,y轴左侧上方图象为f'(x)的图象,下方图象为对g(x)求导,可得g'(x)=f'(x)-f(x)ex,结合图象可知x∈(0,1)和x∈(4,5)时,f'(x)-f(x)<0,即g(x)在0,1和【点睛】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.5、A【解析】分析:易得函数是单调函数,令,则,(为常数),求出的单调性,从而求出在的单调性,得到在恒成立,求出的范围即可.详解:∵定义在上的函数的导函数无零点,∴函数是单调函数,
令,则,在]恒成立,故在递增,
结合题意在上递增,
故在恒成立,
故在恒成立,故,
故选A.点睛:本题考查了函数的单调性问题,考查导数的应用以及转化思想,属于中档题6、C【解析】分析:先求得直线直线AB的倾斜角为,再联立直线AB的方程和抛物线的方程求出点A,B的坐标,再求出点C的坐标,得到AC||x轴,得到,即得P的值和抛物线的方程.详解:设=3a,设直线AB的倾斜角为,所以直线的斜率为.所以直线AB的方程为.联立所以,所以直线OB方程为,令x=-所以故答案为:C.点睛:(1)本题主要考查抛物线的几何性质,考查直线和抛物线的位置关系和抛物线方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答圆锥曲线题目时,看到曲线上的点到焦点的距离(焦半径),要马上联想到利用圆锥曲线的定义解答.7、D【解析】分析:由复数的运算,化简得到z,由实部与虚部的和为1,可求得的值.详解:因为所以因为复数的实部与虚部和为即所以所以选D点睛:本题考查了复数的基本运算和概念,考查了计算能力,是基础题.8、B【解析】分析:指数函数是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同单调性,有演绎推理的定义可知,大前提错误。详解:指数函数是R上的增函数,这个说法是错误的,若,则是增函数,若,则是减函数所以大前提是错误的。所以B选项是正确的。点睛:本题主要考查指数函数的单调性和演绎推理,意在考查三段论的推理形式和指数函数的图像性质,属于基础题。9、A【解析】
将点带入直线可得,利用均值不等式“1”的活用即可求解.【详解】因为直线过点,所以,即,所以当且仅当,即时取等号所以斜率,故选A【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.10、C【解析】
利用定积分求出阴影部分区域面积关于的函数,再利用导数求出该函数的最小值,可得出结果.【详解】设阴影部分区域的面积为,则,,其中,令,得,当时,;当时,.所以,函数在处取得极小值,亦即最小值,且最小值为,因此,阴影部分区域面积的最小值为,故选C.【点睛】本题考查利用定积分计算曲边多边形的面积,考查利用导数求函数的最值,在利用定积分思想求曲边多边形的面积时,要确定被积函数和被积区间,结合定积分公式进行计算,考查计算能力,属于中等题.11、D【解析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:①三个路口人数情况3,1,1,共有种情况;②三个路口人数情况2,2,1,共有种情况.若甲乙在同一路口,则把甲乙看作一个整体,则相当于将4名特警分配到三个不同的路口,则有种,故甲和乙不能安排在同一个路口,不同的安排方法有种.故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.12、A【解析】
函数,是自然对数的底数,存在唯一的零点等价于函数与函数只有唯一一个交点,由,,可得函数与函数唯一交点为,的单调,根据单调性得到与的大致图象,从图形上可得要使函数与函数只有唯一一个交点,则,即可解得实数的取值范围.【详解】解:函数,是自然对数的底数,存在唯一的零点等价于:函数与函数只有唯一一个交点,,,函数与函数唯一交点为,又,且,,在上恒小于零,即在上为单调递减函数,又是最小正周期为2,最大值为的正弦函数,可得函数与函数的大致图象如图:要使函数与函数只有唯一一个交点,则,,,,解得,又,实数的范围为.故选:.【点睛】本题主要考查了零点问题,以及函数单调性,解题的关键是把唯一零点转化为两个函数的交点问题,通过图象进行分析研究,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,∴f(x+1)=−f(x),则f(x+2)=−f(x+1)=f(x),则函数f(x)是周期为2的周期函数,据此可得:14、216【解析】
每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分
3
步进行,第一步
,A
、B.
C
三点选三种颜色灯泡共有
种选法;第二步
,
在
A1
、
B1
、
C1
中选一个装第
4
种颜色的灯泡,有
3
种情况;第三步
,
为剩下的两个灯选颜色
,
假设剩下的为
B1
、
C1,
若
B1
与
A
同色
,
则
C1
只能选
B
点颜色;若
B1
与
C
同色
,
则
C1
有A.
B
处两种颜色可选,故为
B1
、
C1
选灯泡共有
3
种选法,得到剩下的两个灯有
3
种情况,则共有
×3×3=216
种方法.故答案为
21615、9【解析】
将二项式表示为,然后利用二项式定理写出其通项,令的指数为,求出参数的值,再代入通项即可得出项的系数。【详解】,所以,的展开式通项为,令,得,所以,展开式中项的系数为,故答案为:。【点睛】本题考查二项式中指定项的系数,考查二项式展开式通项的应用,这类问题的求解一般要将展开式的通项表示出来,通过建立指数有关的方程来求解,考查运算能力,属于中等题。16、【解析】
点满足则点在椭圆内,且不包含原点.故根据椭圆定义再分析即可.【详解】由题有点在椭圆内,且不包含原点.故,又当在线段上(不包含原点)时取得最小值2.故.故答案为:【点睛】本题主要考查了椭圆的定义及其性质,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)由得出,再由得出,求出、的值,从而得出椭圆的标准方程;(2)设点的坐标为,根据中定义得出直线的方程,并设点、,,将直线的方程与椭圆的方程联立,列出韦达定理,利用中点坐标公式求出点的坐标,得出直线的方程与的方程联立,求出点的坐标,可得出点所在的定直线的方程.【详解】(1)由,可知,即.,,,可得,联立.得,则,所以,所以椭圆的方程为;(2)设点,则由定义可知,过抛物线上任一点处的切线方程为,所以.设、,.联立方程组,消去,得.由,得,解得.因为,所以,从而,所以,所以直线的方程为.而过点且平行于轴的直线方程为,联立方程,解得,所以点在定直线上.【点睛】本题考查椭圆方程的求解,以及直线与抛物线、直线与椭圆的综合问题,解题的关键在于利用题中的定义写出切线方程,并将直线方程与椭圆方程联立,利用韦达定理设而不求法进行求解,考查方程思想的应用,属于难题.18、(1);(2)的分布列为
【解析】试题解析:(1)记“该考生在第一次抽到理科题”为事件,“该考生第二次和第三次均抽到文科题”为事件,则所以该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为(2)的可能取值为0,10,20,30,则所以的分布列为0102030所以,的数学期望19、(1)答案见解析;(2)【解析】试题分析:(1)本题实质就是解方程,如果这个方程有实数解,就说明是“局部奇函数”,如果这个方程无实数解,就说明不是“局部奇函数”,易知有实数解,因此答案是肯定的;(2)已经明确是“局部奇函数”,也就是说方程一定有实数解,问题也就变成方程在上有解,求参数的取值范围,又方程可变形为,因此求的取值范围,就相当于求函数的值域,用换元法(设),再借助于函数的单调性就可求出.试题解析:(1)为“局部奇函数”等价于关于的方程有解.即(3分)有解为“局部奇函数”.(5分)(2)当时,可转化为(8分)因为的定义域为,所以方程在上有解,令,则因为在上递减,在上递增,(11分)(12分)即(14分)考点:新定义概念,方程有解求参数取值范围问题.20、(1)能(2)(3)见解析【解析】分析:根据题意完善表格,由卡方公式得出结论。(2)根据题意,平均时间为计算即可(3)由题意,满足超几何分布,由超几何分布计算概率,数学期望详解:(1)依题意,补充完整的表1如下:喜欢盲拧不喜欢盲拧总计男22830女81220总计302050由表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通行为深度学习-洞察及研究
- 气溶胶-云微物理交互-洞察及研究
- 古DNA生态解析-洞察及研究
- 气候变化适应-第7篇-洞察及研究
- 塑料材料物性稳定性研究-洞察及研究
- 银行财务人员核心业务保密及离职竞业禁止协议
- 社交媒体插画师兼职劳动合同
- 2025年综合类-儿科专业实践能力-新生儿及新生儿疾病历年真题摘选带答案(5卷单选题百道集合)
- 2025年综合类-临床医学检验技术(士)-移植免疫及其免疫检测历年真题摘选带答案(5卷单选100题合辑)
- 2025年综合类-临床医学检验技术(主管技师)-临床免疫学和免疫学检验历年真题摘选带答案(5卷单选题百道集合)
- 小学生中医药文化知识科普传承中医文化弘扬国粹精神课件
- DL∕T 1022-2015 火电机组仿真机技术规范
- 2024-2029年中国运动服装品牌市场分析及投资前景预测报告预测
- 2023年空气加热室设备安装单位工程竣工资料
- 道路清障救援作业服务投标方案(完整技术标)
- 建筑劳务与劳务公司财税法管控13个秘诀
- 2023航标灯光强测量和灯光射程计算
- 海南碧凯药业有限公司二期外用制剂车间栓剂生产线产能扩建项目 环评报告
- 质量指标护理课件
- 反洗钱工作报告
- 2024年度医院医疗设备维修保养情况报告课件
评论
0/150
提交评论