




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i是虚数单位,复数a+i1+i为纯虚数,则实数a的值为A.-1B.1C.-2D.22.函数的图象是()A. B.C. D.3.命题;命题.若为假命题,为真命题,则实数的取值范围是()A. B.或C.或 D.或4.已知,且,.若关于的方程有三个不等的实数根,,,且,其中,为自然对数的底数,则的值为()A. B. C.1 D.5.高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.6.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是()A. B. C. D.8.对于实数,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.10.若集合,,则有()A. B. C. D.11.变量与相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量与相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).表示变量之间的线性相关系数,表示变量与之间的线性相关系数,则()A. B. C. D.12.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取3个球,所取的3个球颜色不同的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为____________.14.已知,则_________.15.若的展开式中所有项的二项式系数之和为64,则展开式中的常数项是__________.16.在平面直角坐标系中,已知点是椭圆:上第一象限的点,为坐标原点,,分别为椭圆的右顶点和上顶点,则四边形的面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这五组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻天数据的概率;(2)若选取的是月日与月日的两组数据,请根据月日至月日的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?18.(12分)(1)求过点且与两坐标轴截距相等的直线的方程;(2)已知直线和圆相交,求的取值范围.19.(12分)某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:20.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.21.(12分)已知函数.(Ⅰ)求函数处的切线方程;(Ⅱ)时,.22.(10分)如图,矩形中,,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】a+i1+i=(a+i)(1-i)2、B【解析】
首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.【详解】因为x﹣>0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x﹣)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、D不正确.当x∈(﹣1,0)时,g(x)=x﹣是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3、B【解析】
首先解出两个命题的不等式,由为假命题,为真命题得命题和命题一真一假.【详解】命题,命题.因为为假命题,为真命题.所以命题和命题一真一假,所以或,选择B【点睛】本题主要考查了简易逻辑的问题,其中涉及到了不等式以及命题真假的判断问题,属于基础题.4、C【解析】
求出,可得,若关于的方程有三个不等的实数根,,,令,即,易知此方程最多有两根,所以,,必有两个相等,画出的图像,可得,根据图像必有,可得,,可得答案.【详解】解:由,可得,设,可得:,可得,由,可得,,可得,若关于的方程有三个不等的实数根,,,令,且,,则有,易知此方程最多有两根,所以,,必有两个相等,由,易得在上单调递增,此时;在,此时,其大致图像如图所示,可得,根据图像必有,又为的两根,即为的两根即又,故,,故.【点睛】本题主要考查微分方程,函数模型的实际应用及导数研究函数的性质等,综合性大,属于难题.5、B【解析】
根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【点睛】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.6、A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.7、B【解析】
首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选B.【点睛】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.8、A【解析】
先判断和成立的条件,然后根据充分性和必要性的定义可以选出正确答案.【详解】成立时,需要;成立时,需要,显然由能推出,但由不一定能推出,故“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,掌握对数的真数大于零这个知识点是解题的关键.9、B【解析】
根据伸缩变换的关系表示已知函数的坐标,代入已知函数的表示式得解.【详解】由伸缩变换,得,代入,得,即.选B【点睛】本题考查函数图像的伸缩变换,属于基础题.10、B【解析】分析:先分别求出集合M和N,由此能求出M和N的关系.详解:,,故.故选:B.点睛:本题考查两个集合的包含关系的判断,考查指数函数、一元二次函数等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11、C【解析】
求出,,进行比较即可得到结果【详解】变量与相对应的一组数据为即变量与相对应的一组数据为这一组数据的相关系数则第一组数据的相关系数大于,第二组数据的相关系数小于则故选【点睛】本题主要考查的是变量的相关性,属于基础题.12、C【解析】分析:题意所求情况分为两种,两白一红,两红一白,两种情况,列式为,除以总的事件个数即可.详解:3个球颜色不同,即分为:两白一红,两红一白,两种情况,列式为,总的事件个数为,概率为.故答案为:C.点睛:这个题目考差了古典概型的计算,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:令即可求出定义域详解:令,,解得综上所述,函数的定义域为点睛:在求定义域时找出题目中的限制条件,有分母的令分母不等于零,有根号的令根号里面大于或者等于零,对数有自身的限制条件,然后列出不等式求出定义域。14、【解析】
根据二项式定理,,推导出,由,能求出.【详解】解:,,,由,解.故答案为1.【点睛】本题考查实数值的求法,考查组合数公式等基础知识,考查推理能力与计算能力,考查函数与方程思想,是基础题.15、1【解析】分析:利用二项式系数的性质求得n的值,再利用二项展开式的通项公式,求得展开式中的常数项.详解:的展开式中所有二项式系数和为,,则;
则展开式的通项公式为令,求得,可得展开式中的常数项是故答案为1.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16、【解析】分析:的面积的最大值当到直线距离最远的时候取得。详解:,当到直线距离最远的时候取得的最大值,设直线,所以,故的最大值为。点睛:分析题意,找到面积随到直线距离的改变而改变,建立面积与到直线距离的函数表达式,利用椭圆的参数方程求解距离的最值。本题还可以用几何法分析与直线平行的直线与椭圆相切时,为切点,到直线距离最大。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)是.【解析】
(1)记事件为“选取的且数据恰好是不相邻天的数据”,利用古典概型的概率公式计算出,再利用对立事件的概率公式可计算出;(2)计算、的值,再利用最小二乘法公式求出回归系数和的值,即可得出回归直线方程;(3)分别将和代入回归直线方程,计算出相应的误差,即可对所求的回归直线方程是否可靠进行判断.【详解】(1)设事件表示“选取的且数据恰好是不相邻天的数据”,则表示“选取的数据恰好是相邻天的数据”,基本事件总数为,事件包含的基本事件数为,,;(2)由题表中的数据可得,.,.,,因此,回归直线方程为;(3)由(2)知,当时,,误差为;当时,,误差为.因此,所求得的线性回归方程是可靠的.【点睛】本题考查古典概型概率的计算,考查回归直线方程的求解与回归直线方程的应用,在求回归直线方程时,要熟悉最小二乘法公式的意义,考查运算求解能力,属于中等题.18、(1)或;(2).【解析】
(1)分类讨论,当直线截距存在时,设出截距式进行求解即可;(2)根据圆心到直线的距离小于半径,即可求得.【详解】(1)当直线经过坐标原点时,满足题意,此时直线方程为;当直线不经过原点时,设直线方程为因为直线过点,故可得,此时直线方程为.故满足题意的直线方程为或.(2)因为直线和圆相交,故可得圆心到直线的距离小于半径,即,解得.即的取值范围为.【点睛】本题考查直线方程的求解,以及根据直线与圆的位置关系,求参数范围的问题.19、(1)90;(2);(3)有的把握认为“该校学生的每周平均课外阅读时间与性别有关”【解析】
(1)根据频率分布直方图进行求解即可.(2)由频率分布直方图先求出对应的频率,即可估计对应的概率.(3)利用独立性检验进行求解即可【详解】(1)30090,所以应收集90位女生的样本数据.(2)由频率分布直方图得1﹣2×(0.100+0.025)=0.1,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.1.(3)由(2)知,300位学生中有300×0.1=225人的每周平均体育运动时间超过4小时,1人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时45301每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得K24.762>3.841所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.【点睛】本题主要考查频率分布直方图以及独立性检验的应用,比较基础20、(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.1.【解析】试题分析:试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故又,故因此所求概率为(Ⅲ)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为【考点】条件概率,随机变量的分布列、期望【名师点睛】条件概率的求法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=,求出P(B|A);(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数n(AB),得P(B|A)=.求离散型随机变量均值的步骤:(1)理解随机变量X的意义,写出X可能取得的全部值;(2)求X取每个值时的概率;(3)写出X的分布列;(4)由均值定义求出E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年腾讯服务合同模板
- 2025企业实习生劳动合同样本
- 2025自然人借款合同
- 2025市中心商业区房屋租赁合同模板
- 特种车辆雇佣合同协议
- 电动液压租赁合同协议
- 玻璃运输装卸服务合同协议
- 电池电解液采购合同协议
- 玉米秸秆定购合同协议
- 电动送料机采购合同协议
- 双盘摩擦压力机的设计(全套图纸)
- 国家开放大学《西方经济学(本)》章节测试参考答案
- 原地面高程复测记录表正式版
- 高等学校建筑学专业本科(五年制)教育评估标准
- 品质周报表(含附属全套EXCEL表)
- 商铺装修工程施工方案.
- MQ2535门座起重机安装方案
- 一针疗法高树中著精校版本
- 第六课-吸烟者的烦恼-《桥梁》实用汉语中级教程(上)课件
- 八年级数学下册第3章图形与坐标复习教案(新)湘教
- 吊篮作业安全监理专项实施细则
评论
0/150
提交评论