版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.形状如图所示的2个游戏盘中(图①是半径为2和4的两个同心圆,O为圆心;图②是正六边形,点P为其中心)各有一个玻璃小球,依次摇动2个游戏盘后,将它们水平放置,就完成了一局游戏,则一局游戏后,这2个盘中的小球都停在阴影部分的概率是()A. B. C. D.2.阅读如图所示的程序框图,则输出的S等于()A.38 B.40 C.20 D.323.定义在上的奇函数满足,当时,,则在区间上是()A.增函数且 B.增函数且C.减函数且 D.减函数且4.已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a的值为()ξ4a9P0.50.1bA.5 B.6 C.7 D.85.运行下列程序,若输入的的值分别为,则输出的的值为A. B.C. D.6.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是()A.17 B.18 C.17.展开式中不含项的系数的和为A. B. C. D.28.在复平面内与复数所对应的点关于虚轴对称的点为,则对应的复数为()A. B. C. D.9.在空间直角坐标中,点到平面的距离是()A.1 B.2 C.3 D.10.利用数学归纳法证明“且”的过程中,由假设“”成立,推导“”也成立时,该不等式左边的变化是()A.增加B.增加C.增加并减少D.增加并减少11.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能12.在中,,,分别是内角,,所对的边,若,则的形状为()A.等腰三角形 B.直角三角形C.钝角三角形 D.锐角三角形二、填空题:本题共4小题,每小题5分,共20分。13.若函数,若,则=______.14.已知等差数列满足,且,,成等比数列,则的所有值为________.15.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽一只,设抽取次品数为,则=_____16.已知点M抛物线上的一点,F为抛物线的焦点,点A在圆上,则的最小值________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题实数满足(其中),命题方程表示双曲线.(I)若,且为真命题,求实数的取值范围;(Ⅱ)若是的必要不充分条件,求实数的取值范围.18.(12分)已知函数的定义域为,值域是.(Ⅰ)求证:;(Ⅱ)求实数的取值范围.19.(12分)已知函数.(1)若函数在上具有单调性,求实数的取值范围;(2)若在区间上,函数的图象恒在图象上方,求实数的取值范围.20.(12分)在平面直角坐标系中,设向量,.(1)当时,求的值;(2)若,且.求的值.21.(12分)一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.(1)求,的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.22.(10分)设函数.(1)当时,求函数的值域;(2)若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先计算两个图中阴影面积占总面积的比例,再利用相互独立事件概率计算公式,可求概率.【详解】一局游戏后,这2个盘中的小球停在阴影部分分别记为事件,,由题意知,,相互独立,且,,所以“一局游戏后,这2个盘中的小球都停在阴影部分”的概率为.故选A.【点睛】本题考查几何概型及相互独立事件概率的求法,考查了分析解决问题的能力,属于基础题.2、B【解析】
模拟程序,依次写出各步的结果,即可得到所求输出值.【详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【点睛】本题考查程序框图中的循环结构,难度较易.3、B【解析】
先利用函数奇偶性求出函数在上的解析式,然后利用周期性求出函数在上的解析式,结合解析式对其单调性以及函数值符号下结论.【详解】设,则,,由于函数为上的奇函数,则,当时,,则.所以,函数在上是增函数,且当时,,,故选B.【点睛】本题考查函数单调性与函数值符号的判断,解决函数问题关键在于求出函数的解析式,本题的核心在于利用奇偶性与周期性求出函数的解析式,属于中等题.4、C【解析】分析:先根据分布列概率和为1得到b的值,再根据E(X)=6.3得到a的值.详解:根据分布列的性质得0.5+0.1+b=1,所以b=0.4.因为E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3,所以a=7.故答案为C.点睛:(1)本题主要考查分布列的性质和随机变量的期望的计算,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①,;②.5、B【解析】分析:按照程序框图的流程逐一写出即可详解:第一步:第二步:第三步:第四步:最后:输出.,故选B.点睛:程序框图的题学生只需按照程序框图的意思列举前面有限步出来,观察规律,得出所求量与步数之间的关系式.6、A【解析】
设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择,计算P(AB)和P(A),再利用条件概率公式得到答案.【详解】设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择P(AB)=P(B故答案选A【点睛】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.7、B【解析】试题分析:由二项式定理知,展开式中最后一项含,其系数为1,令=1得,此二项展开式的各项系数和为=1,故不含项的系数和为1-1=0,故选B.考点:二项展开式各项系数和;二项展开式的通项8、D【解析】
根据复数的运算法则求出,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】由题,在复平面对应的点为(1,1),关于虚轴对称点为(-1,1),所以其对应的复数为.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.9、B【解析】
利用空间坐标的定义,即可求出点到平面的距离.【详解】点,由空间坐标的定义.点到平面的距离为2.故选:B【点睛】本题考查空间距离的求法,属于基础题.10、D【解析】
由题写出时的表达式和的递推式,通过对比,选出答案【详解】时,不等式为时,不等式为,增加并减少.故选D.【点睛】用数学归纳法写递推式时,要注意从到时系数k对表达式的影响,防止出错的方法是依次写出和的表达式,对比增项是什么,减项是什么即可11、A【解析】
利用已知条件,分类讨论化简可得.【详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【点睛】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.12、B【解析】
利用正弦定理和两角和的正弦化简可得,从而得到即.【详解】因为,所以,所以即,因为,故,故,所以,为直角三角形,故选B.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
本题首先可以对分段函数进行研究,确定每一个分段函数所对应的函数解析式以及取值范围,然后先计算出的值,再对与之间的关系进行分类讨论,最后得出结果.【详解】因为函数所以,若即则解得(舍去),若,即,则解得,综上所述,答案为【点睛】本题考查的知识点是分段函数的应用以及函数求值,难度不大,属于基础题.考查分段函数的时候一定要能够对每一个取值范围所对应的函数解析式有一个确定的认识.14、3,4【解析】
先设等差数列公差为,根据题意求出公差,进而可求出结果.【详解】设等差数列公差为,因为,且,,成等比数列,所以,即,解得或.所以或.故答案为3,4【点睛】本题主要考查等差数列的基本量的计算,熟记等差数列的通项公式即可,属于基础题型.15、3【解析】抽取次品数满足超几何分布:,故,,,其期望,故.16、3【解析】
由题得抛物线的准线方程为,过点作于,根据抛物线的定义将问题转化为的最小值,根据点在圆上,判断出当三点共线时,有最小值,进而求得答案.【详解】由题得抛物线的准线方程为,过点作于,又,所以,因为点在圆上,且,半径为,故当三点共线时,,所以的最小值为3.故答案为:3【点睛】本题主要考查了抛物线的标准方程与定义,与圆有关的最值问题,考查了学生的转化与化归的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;(Ⅱ)解出命题中的不等式,由是的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围.【详解】(Ⅰ)由得,若,为真时实数t的取值范围是.由表示双曲线,得,即为真时实数的取值范围是.若为真,则真且真,所以实数t的取值范围是(Ⅱ)设,是的必要不充分条件,.当时,,有,解得;当时,,显然,不合题意.∴实数a的取值范围是.【点睛】本题第(1)问考查复合命题的真假与参数,第(2)问考查充分必要性与参数,一般要结合两条件之间的关系转化为集合间的包含关系,考查转化与化归数学思想,属于中等题.18、(Ⅰ)见解析(Ⅱ).【解析】试题分析:(1)根据已知函数求出定义域,则为已知函数所求出的x的范围的子集,再利用所提供的值域得出m>1,n>1的要求,从而说明m>3;(2)根据复合函数的单调性法则,由于对数的底数0<a<1,以及的单调性判断出原函数f(x)在上为增函数,根据已知定义域和值域及函数的单调性,写出x值与y值的对应关系式,得出列方程组,把问题转化为一元二次方程存在两个大于3的实根问题,最后利用根的分布条件列出不等式组,解出a的范围.试题解析:(Ⅰ),又因为函数的定义域,可得或,而函数的值域为,由对数函数的性质知,(Ⅱ)在区间上递增,又因为即单调递减的函数.即有两个大于3的实数根,.【点睛】(1)处理有关集合的包含关系问题,无限数集一般使用数轴作为工具,可以直观画出集合的包含关系,常借助端点数值的大小关系满足集合的要求;(2)根据函数的单调性及函数的定义域和值域,可以得出自变量与函数值的对应关系,化归与转化思想是高考要求学生学会的一种数学思想,把一个陌生的问题通过转化,变为一个熟悉的问题去解决,本题把满足方程组要求的问题转化为一元二次方程的根的分布问题,很容易得到解决.19、(1)或;(2).【解析】
(1)求出函数图象的对称轴,根据二次函数的单调性求出的范围即可;(2)问题转化为对任意恒成立,设,求出函数的对称轴,通过讨论对称轴的范围,求出m的范围即可.【详解】(1)的对称轴的方程为,若函数在上具有单调性,所以或,所以实数的取值范围是或.(2)若在区间上,函数的图象恒在图象上方,则在上恒成立,即在上恒成立,设,则,当,即时,,此时无解,当,即时,,此时,当,即时,,此时,综上.【点睛】该题考查的是有关二次函数的问题,在解题的过程中,需要对二次函数的性质比较熟悉,再者要注意单调包括单调增和单调减,另外图像落在直线的下方的等价转化,恒成立问题要向最值靠拢.20、(1);(2).【解析】分析:(1)直接带入即可(2)利用向量数量积打开后再利用二倍角公式变形化同名详解:(1)当时,,,所以.(2),若.则,即.因为,所以,所以,所以.点睛:三角函数跟向量的综合是高考当中的热点问题,常常需要利用二倍角公式的逆用对得到的函数关系式进行化简,最终化简为的形式.21、(1),(2)【解析】
(1)设该盒子里有红球个,白球个,利用古典概型、对立事件概率计算公式列出方程组,能求出,.(2)“一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年公寓疫情防控应急预案
- 企业薪酬福利公平性评估制度
- 城市公共设施维护特种作业人员管理制度
- 患者突发心脏停搏应急预案
- 科研单位科研数据保密制度
- 建筑工地槽钢卸料平台搭设方案
- 幼儿园心理健康应急预案:危机干预措施
- 松木桩施工质量控制方案
- 旧建筑拆除施工项目管理方案
- 小学“双减”政策实施后的学生反馈总结
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 2024年认证行业法律法规及认证基础知识
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- YYT 0653-2017 血液分析仪行业标准
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 刑事受害人授权委托书范本
- 《文明上网健康成长》的主题班会
- 电工基础(周绍敏主编)-参考答案
- 小儿常见眼病的诊治与预防PPT参考课件
- 班组建设实施细则
- 毕业设计(论文)汽车照明系统常见故障诊断与排除
评论
0/150
提交评论