版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《圆的基本元素》同步练习一、选择题1.下列说法错误的是()A.长度相等的两条弧是等弧 B.直径是圆中最长的弦 C.面积相等的两个圆是等圆 D.半径相等的两个半圆是等弧2.下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有()个 个 个 个3.以下说法正确的个数有()①半圆是弧。②三角形的角平分线是射线。③在一个三角形中至少有一个角不大于60°。④过圆内一点可以画无数条弦。⑤所有角的度数都相等的多边形叫做正多边形。个 个 个 个4.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()° ° ° °5.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()π π π π二、填空题6.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠AOB=40°,∠OBC=50°,则∠OAC=°。7.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是。8.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是。9.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm。10.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD。请回答:小云所作的两条线段分别是和;证明IG=FD的依据是矩形的对角线相等,和等量代换。三、解答题11.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数。12.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长。13.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?14.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC。(1)求∠AOB的度数。(2)求∠EOD的度数。15.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合。(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来。
参考答案一、选择题1.【分析】利用等弧的定义、等圆的定义及弦的定义分别判断后即可确定正确的选项。【解答】解:A.长度相等的弧的度数不一定相等,故错误;B.直径是圆中最长的弦,正确;C.面积相等的两个圆是等圆,正确;D.半径相等的两个半圆是等弧,正确,故选:A。【点评】本题考查了圆的认识的知识,了解圆的有关定义是解答本题的关键,难度不大。2.【分析】根据弧的分类、圆的性质对各小题进行逐一分析即可。【解答】解:①直径是最长的弦,故本小题正确;②在等圆或同圆中,长度相等的两条弧是等弧,故本小题错误;③经过圆心的每一条直线都是圆的对称轴,故本小题正确;④经过圆心的每一条直线都是圆的对称轴,故本小题错误。故选:B。【点评】本题考查的是圆的认识,熟知圆周角定理、等弧的概念以及弦的定义.注意熟记定理与公式是关键。3.【分析】根据各小题的说法可以判断是否正确,从而可以解答本题。【解答】解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C。【点评】本题考查圆的认识,解题的关键是明确题意,正确的命题说出根据,错误的命题说出错误的原因或者举出反例。4.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余。【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A。【点评】本题考查了三角形的内角和定理和等腰三角形的性质,是基础知识比较简单。5.【分析】根据题意、利用圆的面积公式计算即可。【解答】解:由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π,故选:C。【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键。二、填空题6.【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=80°,求出∠AOC,根据等腰三角形的性质计算。【解答】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°×2=80°,∴∠AOC=80°+40°=120°,∵OC=OA,∴∠OAC=∠OCA=30°,故答案为:30。【点评】本题考查的是等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键。7.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案。【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO。由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A。由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°。故答案为:28°。【点评】本题考查了圆的认识,利用了等腰三角形的性质,利用三角形外角的性质得出关于∠A的方程是解题关键。8.【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求出AB的长。【解答】解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.【点评】此题考查了圆的认识,解题的关键是根据勾股定理求出圆的半径,此题较简单。9.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,BC卷成一个圆,线段BC就是圆的周长,根据半径为2cm可计算BC的长,从而得的长,根据弧长公式可得所对的圆心角的度数,由勾股定理可得MN的长。【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2。【点评】此题实质考查了圆的形成和正方形的性质,确定正方形纸片卷成一个圆柱后BC与半径的关系是关键。10.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论。【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,同圆的半径相等。【点评】本题考查了矩形的性质、正方形的性质、同圆的半径相等的性质;熟练掌握矩形和正方形的性质是解决问题的关键。三、解答题11.【分析】连结OC,如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得∠E=∠1,再利用三角形外角性质得∠2=∠E+∠1=2∠E,加上∠D=∠2=2∠E,所以∠BOD=∠E+∠D,即∠E+2∠E=75°,然后解方程即可。【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°。【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)。也考查了等腰三角形的性质。12.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长。【分析】由直径AB=5cm,可得半径OC=OA=AB=cm,分别利用勾股定理计算AD、AC的长。【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm。【点评】本题考查了同圆的半径相等、勾股定理,在圆中常利用勾股定理计算边的长,本题熟练掌握勾股定理是关键。13.【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD。【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD。【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质。14.【分析】(1)由AB=O得到AB=BO,则∠AOB=∠1=∠A=20°;(2)∠1=∠E,因此∠EOD=3∠A,即可求出∠EOD。【解答】解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度展览展示与活动策划合同2篇
- 2024专业酒店投资协议模板发布一
- 2024年员工服务期限劳动协议范本一
- 2024年国内快递运输服务协议样本版B版
- 二零二四年度网络安全防护系统设计合同2篇
- 江南大学《电机与拖动基础》2023-2024学年第一学期期末试卷
- 2024合伙人转让合伙份额协议书
- 2024年主播演艺经纪协议版B版
- 佳木斯大学《经济写作》2021-2022学年第一学期期末试卷
- 济宁学院《音乐基础》2021-2022学年第一学期期末试卷
- 储能电站能源管理合同
- 生活饮用水卫生标准GB5749-2022
- 第五章 根及根茎类2
- 《双减背景下小学音乐识谱教学有效性策略的研究》课题研究的中期报告
- 高空吊板作业专项方案
- 机械加工检验标准和方法
- 基坑锚索及腰梁施工方案完整版
- 脱硫GGH内部结构、工作原理和检修工艺
- 无锡事业单位新聘用人员试用期考核条例
- 儿童故事小壁虎借尾巴ppt课件
- QC成果编制方式与要求
评论
0/150
提交评论