版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在其定义域内可导,其图象如图所示,则导函数的图象可能为()A. B. C. D.2.下列四个命题中,其中错误的个数是()①经过球面上任意两点,可以作且只可以作一个大圆;②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;③球的面积是它大圆面积的四倍;④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.A.0 B.1 C.2 D.33.用反证法证明:若整系数一元二次方程有有理数根,那么、、中至少有一个偶数时,下列假设正确的是()A.假设、、都是偶数B.假设、、都不是偶数C.假设、、至多有一个偶数D.假设、、至多有两个偶数4.如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是()A.4+2 B.9+32 C.5.球面上有三个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆周长为,那么这个球的半径为()A. B. C. D.6.箱子中有标号为1,2,3,4,5,6且大小、形状完全相同的6个球,从箱子中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,则恰好有3人获奖的概率为()A.16625 B.96625 C.6247.执行如图所示的程序框图,则输出S的值为()A. B.2 C.-3 D.8.命题“”的否定是()A. B.C. D.9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(2-x)f′(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(1)和极小值f(-1)B.函数f(x)有极大值f(1)和极小值f(2)C.函数f(x)有极大值f(2)和极小值f(1)D.函数f(x)有极大值f(-1)和极小值f(2)10.已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()A. B. C. D.11.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升12.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如8455用算筹表示就是,则以下用算筹表示的四位数正确的为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对具有线性相关关系的变量,,有一组观察数据,其回归直线方程是:,且,,则实数的值是__________.14.正项等比数列{an}中,a1+a4+a715.若函数且是偶函数,则函数的值域为_______.16.某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,其中左焦点.(1)求出椭圆的方程;(2)若直线与曲线交于不同的两点,且线段的中点在曲线上,求的值.18.(12分)(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q(p>qξ
0
1
2
3
p
6125a
b
24125(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求p,q的值;(Ⅲ)求数学期望Eξ。19.(12分)袋中有红、黄、白色球各1个,每次任取1个,有放回地抽三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色各不相同;(2)三次颜色不全相同;(3)三次取出的球无红色或黄色.20.(12分)已知函数的最大值为4.(1)求实数的值;(2)若,求的最小值.21.(12分)已知函数的定义域为,值域是.(Ⅰ)求证:;(Ⅱ)求实数的取值范围.22.(10分)某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.关注没关注合计男女合计(1)根据以上数据补全列联表;(2)能否有的把握认为“对事件是否关注与性别有关”?(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.附表:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
函数的单调性确定的符号,即可求解,得到答案.【详解】由函数的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当时,函数单调递增,所以导数的符号是正,负,正,正,只有选项C符合题意.故选:C.【点睛】本题主要考查了函数的单调性与导数符号之间的关系,其中解答中由的图象看函数的单调性,得出导函数的符号是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解析】
结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【详解】对于①,若两点是球的一条直径的端点,则可以作无数个球的大圆,故①错;
对于②三部分的面积都是,故②正确对于③,球面积=,是它大圆面积的四倍,故③正确;
对于④,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故④错.
所以①④错误.
所以C选项是正确的.【点睛】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.3、B【解析】
根据反证法的概念,可知假设应是所证命题的否定,即可求解,得到答案。【详解】根据反证法的概念,假设应是所证命题的否定,所以用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数”时,假设应为“假设都不是偶数”,故选B。【点睛】本题主要考查了反证法的概念及其应用,其中解答中熟记反证法的概念,准确作出所证命题的否定是解答的关键,着重考查了推理与运算能力,属于基础题。4、B【解析】
画出几何体的直观图,利用三视图的数据,求解几何体的表面积即可.【详解】几何体的直观图如图:所以几何体的表面积为:3+3×1故选:B.【点睛】本题考查了根据三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.5、B【解析】
解:6、B【解析】获奖的概率为p=6C62=25,记获奖的人数为ξ,ξ~B(4,7、A【解析】
模拟执行程序框图,依次写出每次循环得到、的值,可得答案【详解】第1次执行循环体后:,;第2次执行循环体后:,;第3次执行循环体后:,;第4次执行循环体后:,;经过4次循环后,可以得到周期为4,因为,所以输出的值为,故选A.【点睛】本题考查程序框图的问题,本题解题的关键是找出循环的周期,属于基础题.8、B【解析】
根据“全称命题”的否定一定是“特称命题”判断.【详解】“全称命题”的否定一定是“特称命题”,命题“”的否定是,故选:B.【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.9、A【解析】由函数y=(2-x)f′(x)的图像可知,方程f′(x)=0有两个实根x=-1,x=1,且在(-∞,-1)上f′(x)<0,在(-1,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)<0.所以函数f(x)有极大值f(1)和极小值f(-1).10、A【解析】
根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【点睛】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.11、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.12、D【解析】
根据题意直接判断即可.【详解】根据“各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示”的原则,只有D符合,故选D.【点睛】本题主要考查合情推理,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值.详解:根据回归直线方程过样本中心点即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.14、14【解析】由题意得q2=a3+a6+a9a1+点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.15、【解析】
根据函数为偶函数可构造方程求得,利用基本不等式可求得函数的最小值,从而得到函数值域.【详解】由为偶函数可得:即,解得:(当且仅当,即时取等号),即的值域为:本题正确结果:【点睛】本题考查函数值域的求解,关键是能够通过函数的奇偶性求得函数的解析式.16、【解析】设元件1,2,3的使用寿命超过1000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=12∴该部件的使用寿命超过1000的事件为(AB+AB+AB)C.∴该部件的使用寿命超过1000小时的概率为P=(12×12三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】
(1)根据离心率和焦点坐标求出,从而得到椭圆方程;(2)将直线方程与椭圆方程联立,利用韦达定理表示出点横坐标,代入直线得到坐标;再将代入曲线方程,从而求得.【详解】(1)由题意得:,解得:,所以椭圆的方程为:(2)设点,,线段的中点为由,消去得由,解得:所以,因为点在曲线上所以解得:或【点睛】本题考查直线与椭圆的综合应用问题,关键是能够通过联立,将中点坐标利用韦达定理表示出来,从而利用点在曲线上构造方程,求得结果.18、(I)1-P(ξ=0)=1-6125=119125,(II)【解析】(1)可根据其对立事件来求:其对立事件为:没有一门课程取得优秀成绩.(2)P(ξ=0)=P(P(ξ=3)=P(建立关于p、q的方程,解方程组即可求解.(3)先算出a,b的值,然后利用期望公式求解即可.事件Ai表示“该生第i门课程取得优秀成绩”,iP(A1)=4(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P(ξ=0)=1-6(II)由题意知P(ξ=0)=P(P(ξ=3)=P(整理得pq=6125,p+q=1由p>q,可得p=3(III)由题意知a=P(ξ=1)=P(=45(1-p)(1-q)+b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=58Eξ=0×P(ξ=0)+1×P(ξ=1)+2P(ξ=2)+3P(ξ=3)=919、(1);(2);(3);【解析】
按球颜色写出所有基本事件;(1)计数三次颜色各不相同的事件数,计算概率;(2)计数三次颜色全相同的事件数,从对立事件角度计算概率;(3)计数三次取出的球无红色或黄色事件数,计算概率;【详解】按抽取的顺序,基本事件全集为:{(红红红),(红红黄),(红红蓝),(红黄红),(红黄黄),(红黄蓝),(红蓝红),(红蓝黄),(红蓝蓝),(黄红红),(黄红黄),(黄红蓝),(黄黄红),(黄黄黄),(黄黄蓝),(黄蓝红),(黄蓝黄),(黄蓝蓝),(蓝红红),(蓝红黄),(蓝红蓝),(蓝黄红),(蓝黄黄),(蓝黄蓝),(蓝蓝红),(蓝蓝黄),(蓝蓝蓝)},共27个.(1)三次颜色各不相同的事件有(红黄蓝),(红蓝黄),(黄红蓝),(黄蓝红),(蓝红黄),(蓝黄红),共6个,概率为;(2)其中颜色全相同的有3个,因此所求概率为;(3)三次取出的球红黄都有的事件有12个,因此三次取出的球无红色或黄色事件有15个,概率为.无红色或黄色事件【点睛】本题考查古典概型概率,解题关键是写出所有基本事件的集合,然后按照要求计数即可,当然有时也可从对立事件的角度考虑.20、(1);(2).【解析】【试题分析】(1)利用绝对值不等式,消去,可求得实数的值.(2)由(1)得.利用配凑法,结合基本不等式可求得最小值.【试题解析】(1)由,当且仅当且当时取等号,此时取最大值,即;(2)由(1)及可知,∴,则,(当且仅当,即时,取“=”)∴的最小值为4.21、(Ⅰ)见解析(Ⅱ).【解析】试题分析:(1)根据已知函数求出定义域,则为已知函数所求出的x的范围的子集,再利用所提供的值域得出m>1,n>1的要求,从而说明m>3;(2)根据复合函数的单调性法则,由于对数的底数0<a<1,以及的单调性判断出原函数f(x)在上为增函数,根据已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年体育赛事赞助合同详细条款与权益分配3篇
- 2025年度跨国公司美金贷款合同
- 二零二五年度水稻种植基地建设合同
- 2025版离婚协议书范本:房产买卖合同分割及处理细则4篇
- 2025年度脱硫石膏复合材料销售协议3篇
- 2025年冰箱洗衣机节能补贴项目合作协议3篇
- 2025年度离婚协议书:陈飞与刘婷离婚财产分割及子女抚养费协议4篇
- 二零二五年度老旧小区消防隐患排查与整改承包合同2篇
- 二零二四云存储服务与云原生应用部署合同3篇
- 货物运输协议
- ICU常见药物课件
- CNAS实验室评审不符合项整改报告
- 农民工考勤表(模板)
- 承台混凝土施工技术交底
- 卧床患者更换床单-轴线翻身
- 计量基础知识培训教材201309
- 中考英语 短文填词、选词填空练习
- 一汽集团及各合资公司组织架构
- 阿特拉斯基本拧紧技术ppt课件
- 初一至初三数学全部知识点
- 新课程理念下的班主任工作艺术
评论
0/150
提交评论