




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若曲线与曲线在它们的公共点处具有公共切线,则实数的值为()A. B. C. D.2.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:由公式算得:K2=≈7.8.附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”3.已知自然数,则等于()A. B. C. D.4.设实数满足约束条件,则的最大值为()A. B.1 C.6 D.95.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种6.若函数在区间上是减函数,则实数的取值范围是()A. B. C. D.7.若直线和椭圆恒有公共点,则实数的取值范围是()A. B. C. D.8.一个袋中装有大小相同的个白球和个红球,现在不放回的取次球,每次取出一个球,记“第次拿出的是白球”为事件,“第次拿出的是白球”为事件,则事件与同时发生的概率是()A. B. C. D.9.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种 B.63种 C.65种 D.66种10.设集合,则()A. B. C. D.11.若,则=()A.-1 B.1 C.2 D.012.从中不放回地依次取个数,事件表示“第次取到的是奇数”,事件表示“第次取到的是奇数”,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为,若球心到这两个平面的距离相等,则这两个圆的半径之和为__________.14.在正方体中,为的中点,为底面的中心,为棱上任意一点,则直线与直线所成的角是____________.15.在如图的数表中,仅列出了前6行,照此排列规律还可以继续排列下去,则数表中第()行左起第3个数为_______。16.用1,2,3,4,5,6组成没有重复数字,且至少有一个数字是奇数的三位偶数,这样的三位数一共有______个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)假定某人在规定区域投篮命中的概率为23,现他在某个投篮游戏中,共投篮3次(1)求连续命中2次的概率;(2)设命中的次数为X,求X的分布列和数学期望EX18.(12分)椭圆的左右焦点分别为,与轴正半轴交于点,若为等腰直角三角形,且直线被圆所截得的弦长为2.(1)求椭圆的方程;(2)直线:与椭圆交于点,线段的中点为,射线与椭圆交于点,点为的重心,求证:的面积为定值.19.(12分)在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.20.(12分)某校从参加高二年级期末考试的学生中随机抽取了名学生,已知这名学生的物理成绩均不低于60分(满分为100分).现将这名学生的物理成绩分为四组:,,,,得到的频率分布直方图如图所示,其中物理成绩在内的有28名学生,将物理成绩在内定义为“优秀”,在内定义为“良好”.男生女生合计优秀良好20合计60(1)求实数的值及样本容量;(2)根据物理成绩是否优秀,利用分层抽样的方法从这名学生中抽取10名,再从这10名学生中随机抽取3名,求这3名学生的物理成绩至少有2名是优秀的概率;(3)请将列联表补充完整,并判断是否有的把握认为物理成绩是否优秀与性别有关?参考公式及数据:(其中).0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知点A是椭圆的上顶点,斜率为的直线交椭圆E于A、M两点,点N在椭圆E上,且;(1)当时,求的面积;(2)当时,求证:.22.(10分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:设公共点,求导数,利用曲线与曲线在它们的公共点处具有公共切线,建立方程组,即可求出a的值.详解:设公共点,,,曲线与曲线在它们的公共点处具有公共切线,,解得.故选:A.点睛:本题考查利用导数研究曲线上某点切线方程,考查学生的计算能力,正确求导是关键.2、A【解析】
,则有99%以上的把握认为“爱好体育运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3、D【解析】分析:直接利用排列数计算公式即可得到答案.详解:.故选:D.点睛:合理利用排列数计算公式是解题的关键.4、D【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图像求得结果【详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【点睛】此题考查画不等式组表示的平面区域,考查数形结合求函数的最值.5、B【解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.6、D【解析】
根据复合函数的单调性,同增异减,则,在区间上是增函数,再根据定义域则在区间上恒成立求解.【详解】因为函数在区间上是减函数,所以,在区间上是增函数,且在区间上恒成立.所以且,解得.故选:D【点睛】本题主要考查复合函数的单调性,还考查了理解辨析和运算求解的能力,属于中档题.7、B【解析】
根据椭圆1(b>0)得出≠3,运用直线恒过(0,2),得出1,即可求解答案.【详解】椭圆1(b>0)得出≠3,∵若直线∴直线恒过(0,2),∴1,解得,故实数的取值范围是故选:B【点睛】本题考查了椭圆的几何性质,直线与椭圆的位置关系,属于中档题.8、D【解析】
将事件表示出来,再利用排列组合思想与古典概型的概率公式可计算出事件的概率.【详解】事件:两次拿出的都是白球,则,故选D.【点睛】本题考查古典概型的概率计算,解题时先弄清楚各事件的基本关系,然后利用相关公式计算所求事件的概率,考查计算能力,属于中等题.9、D【解析】试题分析:要得到四个数字的和是偶数,需要分成三种不同的情况,当取得个偶数时,有种结果,当取得个奇数时,有种结果,当取得奇偶时有种结果,共有种结果.故答案为D.考点:分类计数原理.10、B【解析】分析:首先求得A,B,然后进行交集运算即可.详解:求解函数的定义域可得:,由函数的定义域可得:,结合交集的定义可知:.本题选择B选项.点睛:本题主要考查函数定义域的求解,交集的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.11、A【解析】
将代入,可以求得各项系数之和;将代入,可求得,两次结果相减即可求出答案.【详解】将代入,得,即,将代入,得,即,所以故选A.【点睛】本题考查二项式系数的性质,若二项式展开式为,则常数项,各项系数之和为,奇数项系数之和为,偶数项系数之和为.12、D【解析】试题分析:由题意,,∴,故选D.考点:条件概率与独立事件.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】
先设两圆的圆心为,球心为,公共弦为,中点为,由球心到这两个平面的距离相等,可得两圆半径相等,然后设两圆半径为r,由勾股定理表示出,,再由,即可求出r,从而可得结果.【详解】设两圆的圆心为,球心为,公共弦为,中点为,因为球心到这两个平面的距离相等,则为正方形,两圆半径相等,设两圆半径为,,,又,,,.这两个圆的半径之和为6.【点睛】本题主要考查球的结构特征,由球的特征和题中条件,找出等量关系,即可求解.14、90°【解析】
直线在平面内的射影与垂直.【详解】如图,分别是的中点,连接,易知在上,,又在正方形中,是的中点,∴(可通过证得),又正方体中,而,∴,,∴,∴直线与直线所成的角是90°.故答案为90°.【点睛】本题考查两异面直线所成的角,由于它们所成的角为90°,因此可通过证明它们相互垂直得到,这又可通过证明线面垂直得出结论,当然也可用三垂线定理证得.15、【解析】
根据题意先确定每行最后一个数,再求结果【详解】依排列规律得,数表中第行最后一个数为第行左起第3个数为.【点睛】本题考查归纳推理,考查基本分析求解能力,属基础题.16、54【解析】
运用排列组合,先求出偶数的可能一共有多少个,然后减去三个数字都是偶数的情况【详解】当个位是偶数的时候共有种可能三个数字都是偶数时,有种可能则满足题意的三位数共有种故答案为【点睛】本题考查了排列组合的数字的排序问题,只要按照题目要求进行分类求出一共的情况,然后减去不符合情况即可得出结果三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)827【解析】
(1)设Ai(i=1,1,3)表示第i次投篮命中,Ai表示第i次投篮不中,设投篮连续命中1次为事件A,则连续命中1次的概率:P(A)=P(A1A(1)命中的次数X可取0,1,1,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【详解】(1)设Ai(i=1,2,3)表示第i次投篮命中,Ai表示第i次投篮不中;设投篮连续命中1次为事件A(1)命中的次数X可取0,1,1,3;P(X=0)=(1-23P(X=2)=CP(X=3)=(0113所以E(X)=1×2答:X的数学期望为1.【点睛】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式、二项分布的性质等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.18、(1);(2)【解析】分析:(1)由等腰直角三角形的性质分析可得,又由直线与圆的位置关系可得的值,进而可得的值,将的值代入椭圆的方程即可得结论;(2)根据题意,分、两种情况讨论,若直线的斜率不存在,容易求出的面积,若直线的斜率存在,设直线的方程为,设,联立直线与椭圆的方程,结合一元二次方程中根与系数的关系,求出的面积消去参数,综合两种情况可得结论.详解:(1)由为等腰直角三角形可得,直线:被圆圆所截得的弦长为2,所以,所以椭圆的方程为.(2)若直线的斜率不存在,则.若直线的斜率存在,设直线的方程为,设,即,则,,,由题意点为重心,设,则,所以,,代入椭圆,得,整理得,设坐标原点到直线的距离为,则的面积.综上可得的面积为定值.点睛:本题主要考查待定待定系数法求抛物线及椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19、(1),;(2)或.【解析】
(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【详解】C1的参数方程为消参得普通方程为x-y-a+1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.所以曲线C2的直角坐标方程为y2=4x.(2)曲线C1的参数方程可转化为(t为参数,a∈R),代入曲线C2:y2=4x,得+1-4a=0,由Δ=,得a>0,设A,B对应的参数分别为t1,t2,由|PA|=2|PB|得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=;当t1=-2t2时,解得a=,综上,或.【点睛】本题主要考查参数方程、极坐标方程和直角坐标方程的互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)100;(2);(3)见解析【解析】
(1)由题可得,即可得到的值,结合物理成绩在内的有名学生,可求出样本容量;(2)先求出这名学生中物理成绩良好的人数,结合分层抽样的特点,可分别求出这名学生中物理成绩良好和优秀的人数,然后列出式子求概率即可;(3)先完善列联表,然后求出的观测值,从而可得到答案.【详解】(1)由题可得,解得,又物理成绩在内的有名学生,所以,解得.(2)由题可得,这名学生中物理成绩良好的有名,所以抽取的名学生中物理成绩良好的有名,物理成绩优秀的有名,故从这10名学生中随机抽取3名,这3名学生的物理成绩至少有2名是优秀的概率为.(3)补充完整的列联表如下表所示:男生女生合计优秀204060良好202040合计4060100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年美容师高级护理技能测试卷:美容师高级护理美容院品牌建设与推广
- 2025年小提琴专业水平测试卷:音乐理论知识与解析试题库
- 2025年大数据分析师职业技能测试卷:Python数据分析库PySpark应用
- 精铸烤壳炉企业数字化转型与智慧升级战略研究报告
- 合金钢钢丝企业数字化转型与智慧升级战略研究报告
- 电容压力-差压变送器企业ESG实践与创新战略研究报告
- 2025年茶艺师高级技能考核试卷:茶艺师茶艺师茶叶加工与产品开发试题
- 医疗服务合同样本
- 18、地球上的水 三年级上册科学教学设计 青岛版(五四制)
- 出售高层平房合同样本
- 防化的相关知识
- 青少年科技创新知识讲座
- 2025山东司法警官职业学院教师招聘考试试题及答案
- 中国糖尿病防治指南(2024版)解读
- 许慎《说文解字》(全文)
- DB34∕T 1948-2013 建设工程造价咨询档案立卷标准
- 通用门座机安装工艺2
- 企业集团财务管理综合练习计算
- 养老机构服务高质量115项明细
- 船舶首制船设计任务书doc
- 电气专业迎峰度夏措施及预案
评论
0/150
提交评论