2023届山东省青岛市平度第三中学数学高二下期末学业质量监测试题含解析_第1页
2023届山东省青岛市平度第三中学数学高二下期末学业质量监测试题含解析_第2页
2023届山东省青岛市平度第三中学数学高二下期末学业质量监测试题含解析_第3页
2023届山东省青岛市平度第三中学数学高二下期末学业质量监测试题含解析_第4页
2023届山东省青岛市平度第三中学数学高二下期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.2.若实数满足,则的取值范围为()A. B. C. D.3.某大学中文系共有本科生5000人,期中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生A.100人 B.60人 C.80人 D.20人4.若函数的定义域为,则函数的定义域为()A. B. C. D.5.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为A. B. C. D.6.下列问题中的随机变量不服从两点分布的是()A.抛掷一枚骰子,所得点数为随机变量B.某射手射击一次,击中目标的次数为随机变量C.从装有5个红球,3个白球的袋中取1个球,令随机变量{1,取出白球;0,取出红球}D.某医生做一次手术,手术成功的次数为随机变量7.某公共汽车上有5名乘客,沿途有4个车站,乘客下车的可能方式()A.种 B.种 C.种 D.种8.已知为虚数单位,则复数=()A. B. C. D.9.在△ABC中内角A,B,C所对各边分别为,,,且,则角=A.60° B.120° C.30° D.150°10.已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是()A.若所有样本点都在上,则变量间的相关系数为1B.至少有一个样本点落在回归直线上C.对所有的预报变量,的值一定与有误差D.若斜率,则变量与正相关11.若函数在上是增函数,则实数的取值范围是()A. B. C. D.12.把编号分别为1,2,3,4,5的五张电影票全部分给甲、乙、丙三个人,每人至少一张,若分得的电影票超过一张,则必须是连号,那么不同分法的种数为()A.36 B.40 C.42 D.48二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的左视图如图所示,则该三棱锥的体积是________;14.在空间中,已知一个正方体是12条棱所在的直线与一个平面所成的角都等于,则______.15.设,则等于___________.16.在长方体中,,,点为线段的中点,点为对角线上的动点,点为底面上的动点,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求的取值范围.18.(12分)已知函数.(1)若,证明:当时,;(2)若在有两个零点,求的取值范围.19.(12分)设函数,曲线通过点,且在点处的切线垂直于轴.(1)用分别表示和;(2)当取得最小值时,求函数的单调区间.20.(12分)已知函数,(1)若,证明:函数是上的减函数;(2)若曲线在点处的切线不直线平行,求a的值;(3)若,证明:(其中…是自然对数的底数).21.(12分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:表1每分钟跳绳个数得分17181920(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大于等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?表2跳绳个数合计男生28女生54合计100附:参考公式:临界值表:0.0500.0100.0013.8416.63510.828(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数服从正态分布(用样本数据的平均值和方差估计总体的期望和方差,各组数据用中点值代替).①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为,求的分布列及期望.附:若随机变量服从正态分布,则,,..22.(10分)脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.2、C【解析】分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.详解:作出不等式组对应的平面区域如图:设,得,平移直线,由图象可知当直线经过点时,直线的截距最小,此时z最小,为,当直线经过点时,直线的截距最大,此时时z最大,为,即.故选:C.点睛:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.3、C【解析】

要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,

则应抽二年级的学生人数为:

(人).

故答案为80.4、B【解析】

由抽象函数的定义域,对数的真数大于零,分母不为零,列出不等式,从而求出的定义域。【详解】由题可得:,解得且,所以函数的定义域为;故答案选B【点睛】本题主要抽象函数与初等函数的定义域,属于基础题。5、D【解析】试题分析:设的中点为,连接,易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为,则,由余弦定理,得,故选D.考点:异面直线所成的角.6、A【解析】

两点分布又叫分布,所有的实验结果有两个,,,满足定义,不满足.【详解】两点分布又叫分布,所有的实验结果有两个,,,满足定义,而,抛掷一枚骰子,所得点数为随机变量,则的所有可能的结果有6种,不是两点分布.故选:.【点睛】本题考查了两点分布的定义,意在考查学生对这些知识的理解掌握水平,属于基础题.7、D【解析】

5名乘客选4个车站,每个乘客都有4种选法.【详解】每个乘客都有4种选法,共有种,选D【点睛】每个乘客独立,且每个乘客都有4种选法8、A【解析】

根据复数的除法运算,即可求解,得到答案.【详解】由复数的运算,可得复数,故选A.【点睛】本题主要考查了复数的基本运算,其中解答中熟记的除法运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】分析:利用余弦定理即可。详解:由余弦定理可知,所以。点睛:已知三边关系求角度,用余弦定理。10、D【解析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为,故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.11、D【解析】

由题意得在上恒成立,利用分离参数思想即可得出结果.【详解】∵,∴,又∵函数在上是增函数,∴在恒成立,即恒成立,可得,故选D.【点睛】本题主要考查了已知函数的单调性求参数的取值范围,属于中档题.12、A【解析】

将情况分为113和122两种情况,相加得到答案.【详解】当分的票数为这种情况时:当分的票数为这种情况时:一张票数的人可以选择:不同分法的种数为36故答案选A【点睛】本题考查了排列组合,将情况分为两类可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由左视图得出三棱锥中线面关系及棱的长度.【详解】由左视图知三棱锥的高为,底面等腰三角形的底边长为,又底面等腰三角形的腰长为2,这个等腰三角形的面积为,.故答案为:.【点睛】本题考查棱锥的体积,解题是由左视图得出棱锥的高为1,底面等腰三角形的底边长为,从而由体积公式可求得棱锥的体积,本题还考查了空间想象能力.14、【解析】

画出几何图形,可知面与12条棱所在的直线与一个平面所成的角都等于,在可求得.【详解】画出几何图形,可知面与12条棱所在的直线与一个平面所成的角都等于正方体面,与面所成的角为不妨设正方体棱长为,故在中由勾股定理可得:故答案为:.【点睛】本题考查了线面角求法,根据体积画出几何图形,掌握正方体结构特征是解本题的关键.属于基础题.15、【解析】

根据微积分基本定理可得,再结合函数解析式,根据牛顿莱布尼茨定理计算可得;【详解】解:因为所以故答案为:【点睛】本题考查利用定积分求曲边形的面积,属于基础题.16、【解析】

画出图形,利用折叠与展开法则使和在同一个平面,转化折线段为直线段距离最小,即可求得的最小值.【详解】当的最小值,即到底面的距离的最小值与的最小值之和.为底面上的动点,当是在底面上的射影,即是最小值.展开三角形与三角形在同一个平面上,如图:长方体中,,长方体体对角线长为:在中:故故过点作,即为最小值.在,故答案为:.【点睛】解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些条件发生了变化,哪些条件没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)或【解析】

(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.18、(1)证明见解析.(2).【解析】

分析:(1)只要求得在时的最小值即可证;(2)在上有两个不等实根,可转化为在上有两个不等实根,这样只要研究函数的单调性与极值,由直线与的图象有两个交点可得的范围.详解:(1)证明:当时,函数.则,令,则,令,得.当时,,当时,在单调递增,(2)解:在有两个零点方程在有两个根,在有两个根,即函数与的图像在有两个交点.,当时,,在递增当时,,在递增所以最小值为,当时,,当时,,在有两个零点时,的取值范围是.点睛:本题考查用导数证明不等式,考查函数零点问题.用导数证明不等式可转化这求函数的最值问题,函数零点问题可转化为直线与函数图象交点问题,这可用分离参数法变形,然后再研究函数的单调性与极值,从而得图象的大致趋势.19、(1),;(2)的减区间为和;增区间为.【解析】分析:(1)求函数的导数,利用已知条件和导数的几何意义,即可用分别表示和;(2)当取得最小值时,求得,和的值.写出函数的解析式,根据求导法则求出,令=0求出的值,分区间讨论的正负,即可得到函数的单调区间.详解:解:(1)因为,所以又因为曲线通过点,故,而,从而.又曲线在处的切线垂直于轴,故,即,因此.(2)由(1)得,故当时,取得最小值.此时有.从而,,,所以.令,解得.当时,,故在上为减函数;当时,,故在上为增函数.当时,,故在上为减函数.由此可见,函数的单调递减区间为和;单调递增区间为.点睛:本题考查导数的几何意义,利用函数的导数研究函数的单调性,以及二次函数的最值问题,做题时要注意函数的求导法则的正确运用.20、(I)详见解析;(II);(III)详见解析.【解析】试题分析:(1)由题意二次求导可得,函数是上的减函数.(2)利用题意由导函数研究函数的切线得到关于a的方程,解方程可得.(3)原不等式等价于,结合(1)的结论构造函数,令,可证得.试题解析:(Ⅰ)当时,函数的定义域是,所以,令,只需证:时,.又,故在上为减函数,所以,所以,函数是上的减函数.(Ⅱ)由题意知,,且,所以,即有,令,,则,故是上的增函数,又,因此是的唯一零点,即方程有唯一实根,所以.(Ⅲ)因为,故原不等式等价于,由(Ⅰ)知,当时,是上的减函数,故要证原不等式成立,只需证明:当时,,令,则,在上的增函数,所以,即,故,即.21、(1)不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①约为1683人,②见解析【解析】

(1)根据题目所给信息,完成表2,根据表中数据计算K2的观测值k,查表判断即可;

(2)利用频率分布直方图求解平均数和标准差,推出正式测试时,μ=185+10=195,σ=13,μ-σ=1.

①,由此可推出人数.

②由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,得到ξ服从,求出ξ的分布列,然后求解期望即可.【详解】(1)在抽取的

100

人中

满分的总人数为

100×(0.03+0.01+0.008)×10=48人,男生满分的有

28

人,所以女生满分的有

20

人,男生共有

46

人,女生

54

人,所以男生跳绳个数不足

185

个的有46−28=18

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论