2023届兰州市重点中学高二数学第二学期期末统考模拟试题含解析_第1页
2023届兰州市重点中学高二数学第二学期期末统考模拟试题含解析_第2页
2023届兰州市重点中学高二数学第二学期期末统考模拟试题含解析_第3页
2023届兰州市重点中学高二数学第二学期期末统考模拟试题含解析_第4页
2023届兰州市重点中学高二数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.2.设离散型随机变量的概率分布列如表:1234则等于()A. B. C. D.3.设,若直线与圆相切,则的取值范围是()A. B.C. D.4.设,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有()A.6 B.8 C.12 D.246.“”是“的展开式中含有常数项”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.非充分非必要条件7.命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.给定空间中的直线及平面,条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件9.已知,命题“若,则.”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.310.设p、q是两个命题,若是真命题,那么()A.p是真命题且q是假命题 B.p是真命题且q是真命题C.p是假命题且q是真命题 D.p是假命题且q是假命题11.己知三边,,的长都是整数,,如果,则符合条件的三角形的个数是()A. B. C. D.12.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从湖中打一网鱼,共条,做上记号再放回湖中;数天后再打一网鱼共有条,其中有条有记号,则能估计湖中有鱼____________条.14.在半径为2的圆内任取一点,则该点到圆心的距离不大于1的概率为________.15.6名同学派出一排照相,其中甲、乙两人相邻的排法共有________种(用数字表示)16.将4个不同的小球任意放入3个不同的盒子中,则每个盒子中至少有1个小球的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为、、,且这名同学各门学科能否进复赛相互独立.(1)求这名同学三门学科都能进复赛的概率;(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.18.(12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的时间/分钟总人数203644504010将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(Ⅰ)请根据上述表格中的统计数据填写下面的列联表;课外体育不达标课外体育达标合计男女20110合计(Ⅱ)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式,其中.0.250.150.100.050.0250.0100.0050.0011.3232.0722.7063.8415.0246.6357.87910.82819.(12分)已知函数(1)设的最大值为,求的最小值;(2)在(1)的条件下,若,且,求的最大值.20.(12分)已知的展开式中有连续三项的系数之比为1︰2︰3,(1)这三项是第几项?(2)若展开式的倒数第二项为112,求x的值.21.(12分)已知椭圆经过点离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.22.(10分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故选D.2、D【解析】分析:利用离散型随机变量X的概率分布列的性质求解.详解:由离散型随机变量X的分布列知:,解得.故选:D.点睛:本题考查概率的求法,是基础题,解题时要注意离散型随机变量X的概率分布列的性质的灵活应用.3、C【解析】分析:由直线与圆相切,得,从而,进而,由此能求出的取值范围.详解:,直线与圆相切,圆心到直线的距离,解得,,,,的取值范围是.故选C.点睛:本题考查代数和取值范围的求法,考查直线方程、圆、点到直线的距离公式、基本不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.4、C【解析】

先由直线与平行,求出的范围,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与平行,所以,解得或,又当时,与重合,不满足题意,舍去;所以;由时,与分别为,,显然平行;因此“”是“直线与平行”的充要条件;故选C【点睛】本题主要考查由直线平行求参数,以及充分条件与必要条件的判定,熟记概念即可,属于常考题型.5、B【解析】

这里将“乙”看做特殊元素,考虑“乙”的位置,再考虑甲的位置,运用分类加法去计算.【详解】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:种,若“乙”安排在第三棒,此时有:种,则一共有:种.故选:B.【点睛】(1)排列组合中,遵循特殊元素优先排列的原则;(2)两个常用的计数原理:分类加法和分步乘法原理.6、A【解析】

根据二项展开式的通项可知当时,只需即可得到常数项,可知充分条件成立;当时,展开式均含有常数项,可知必要条件不成立,从而得到结果.【详解】展开式的通项公式为:当时,通项公式为:令,解得:,此时为展开式的常数项,可知充分条件成立令,解得:当时,展开式均含有常数项,可知必要条件不成立“”是“的展开式中含有常数项”的充分不必要条件本题正确选项:【点睛】本题考查充分条件与必要条件的判定,涉及到二项式定理的应用;关键是能够熟练掌握二项展开式通项公式的形式,进而确定当幂指数为零时所需要的条件,从而确定是否含有常数项.7、B【解析】

根据充分条件和必要条件的定义分别进行判断即可.【详解】命题p:∀x∈R,ax2﹣2ax+1>0,解命题p:①当a≠0时,△=4a2﹣4a=4a(a﹣1)<0,且a>0,∴解得:0<a<1,②当a=0时,不等式ax2﹣2ax+1>0在R上恒成立,∴不等式ax2﹣2ax+1>0在R上恒成立,有:0≤a<1;命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则0<a<1;所以当0≤a<1;推不出0<a<1;当0<a<1;能推出0≤a<1;故P是q的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了二次型函数恒成立的问题,考查了指数函数的单调性,属于基础题.8、B【解析】分析:利用直线与平面平行的定义判断即可.详解:直线上有两个不同的点到平面的距离相等,如果两点在平面同侧,则;如果两点在平面异侧,则与相交:反之,直线与平面平行,则直线上有两个不同的点到平面的距离相等.故条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的必要非充分条件.故选B.点睛:明确:则是的充分条件,,则是的必要条件.准确理解线面平行的定义和判定定理的含义,才能准确答题.9、C【解析】

先写出原命题的逆命题,否命题,再判断真假即可,这里注意的取值,在判断逆否命题的真假时,根据原命题和它的逆否命题具有相同的真假性判断原命题的真假即可.【详解】解:逆命题:设,若,则a>b,由可得,能得到a>b,所以该命题为真命题;否命题设,若a≤b,则,由及a≤b可以得到,所以该命题为真命是题;因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可,当时,,所以由a>b得到,所以原命题为假命题,即它的逆否命题为假命题;故为真命题的有2个.故选C.【点睛】本题主要考查四种命题真假性的判断问题,由题意写出原命题的逆命题,否命题并判断命题的真假是解题的关键.10、C【解析】

先判断出是假命题,从而判断出p,q的真假即可.【详解】若是真命题,则是假命题,则p,q均为假命题,故选D.【点睛】该题考查的是有关复合命题的真值表的问题,在解题的过程中,首先需要利用是真命题,得到是假命题,根据“或”形式的复合命题真值表求得结果.11、D【解析】

根据题意,可取的值为1、2、3、…25,由三角形的三边关系,有,对分情况讨论,分析可得可取的情况,即可得这种情况下符合条件的三角形的个数,由分类计数原理,结合等差数列的前项和公式,计算可得答案.【详解】解:根据题意,可取的值为1、2、3、…25,

根据三角形的三边关系,有,

当时,有25≤<26,则=25,有1种情况,

当时,有25≤<27,则=25、26,有2种情况,

当时,有25≤<28,则=25、26、27,有3种情况,

当时,有25≤<29,则=25、26、27、28,有4种情况,

当时,有有25≤<50,则=25、26、27、28…49,有25种情况,

则符合条件的三角形共有1+2+3+4+…+25=;

故选:D.【点睛】本题考查分类计数原理的运用,涉及三角形三边的关系,关键是发现变化时,符合条件的三角形个数的变化规律.12、A【解析】

利用代入法,即可得到伸缩变换的曲线方程.【详解】∵伸缩变换,∴xx′,yy′,代入曲线y=sin2x可得y′=3sinx′故选:A.【点睛】本题考查代入法求轨迹方程,考查学生的计算能力,比较基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

按比例计算.【详解】估计湖中有鱼条,则,.故答案为:.【点睛】本题考查用样本数据特征估计总体,解题时把样本的频率作为总体频率计算即可.14、【解析】

通过计算对应面积,即可求得概率.【详解】该点取自圆内,占有面积为,而该点到圆心的距离不大于1占有面积为:,故所求概率为:.【点睛】本题主要考查几何概型的相关计算,难度不大.15、240【解析】

利用捆绑法可得排法总数.【详解】解:6名同学派出一排照相,其中甲、乙两人相邻,用捆绑法可得排法数有种.故答案为:240.【点睛】本题考查捆绑法解决排列问题,是基础题.16、【解析】试题分析:将个不同的小球任意放入个不同的盒子中,每个小球有种不同的放法,共有种放法,每个盒子中至少有个小球的放法有种,故所求的概率.考点:1、排列组合;2、随机变量的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:(1),根据相互独立事件的概率的求法,即可求解三科都能进复赛的概率;(2)由题意,可得随机变量X可取,利用相互独立事件的概率求法,求得随机变量取每个值的概率,即可求得随机变量的分布列和数学期望.详解:设三科能进复赛的事件分别为A、B、C,则,,.(1)三科都能进复赛的概率为;(2)X可取0,1,2,1.;;;.所以,X的分布列为:X0121P数学期望点睛:本题主要考查了相互独立事件的概率的计算,以及随机变量的分布列和数学期望的求解,此类问题的解答中要认真审题,合理计算是解答的关键,着重考查了分析问题和解答问题的能力.18、(Ⅰ)答案见解析;(Ⅱ)在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关.【解析】【试题分析】(1)根据题目所给数据可填写好表格.(2)通过公式计算,所以在犯错误的概率不超过的前提下不能判断“课外体育达标”与性别有关.【试题解析】(1)课外体育不达标课外体育达标合计男603090女9020110合计15050200(2)所以在犯错误的概率不超过的前提下不能判断“课外体育达标”与性别有关.19、(1)(2)2【解析】

运用不等式性质求出最小值根据不等式求最大值【详解】(1)∵,∴(当且仅当时取“=”号)∴(2)∵(当且仅当时取“=”号),(当且仅当时取“=”号),(当且仅当时取“=”号),∴(当且仅当时取“=”号)∴(当且仅当时取“=”号)∴的最大值为2.【点睛】本题考查了根据绝对值的应用求出不等式的解集,运用不等式性质求解是本题关键,注意题目中的转化。20、(1)第5、6、7项;(2)或;【解析】

(1)先求展开式各项的系数,由有连续三项的系数之比为1︰2︰3,求出及项数;(2)再由通项公式写出倒数第二项,由它等于112求出.【详解】(1)展开式各项系数为,由题意,即,解得,∴这三项是第5、6、7项.(2)倒数第二项为,∴==112,,,即,,∴或.【点睛】本题考查二项式定理,考查组合数公式的计算,题中难点有两个,一个是把组合数用阶乘表示出来后求解较方便,一个是解方程时要先取以2为底的对数后才能求解.21、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)由题中已知条件可得,,代入椭圆的方程,将点的坐标代入椭圆方程可求出c的值,进而得出、b的值,于是可得到椭圆的方程;(Ⅱ)设直线l的方程为,设点,将直线l的方程代入椭圆的方程,列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论