




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知中,若,则的值为()A.2 B.3 C.4 D.52.二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.则由四维空间中“超球”的三维测度,猜想其四维测度()A. B. C. D.3.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.4.是异面直线的公垂线,在线段上(异于),则的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.三角形不定5.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.6.一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有()种不同的取法A.C61C22 B.7.若关于x的方程|x4-x3|=ax在R上存在4个不同的实根,则实数a的取值范围为()A. B. C. D.8.函数的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)9.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C. D.10.如图,在棱长为的正方体中,为的中点,为上任意一点,、为上两点,且的长为定值,则下面四个值中不是定值的是()A.点到平面的距离B.直线与平面所成的角C.三棱锥的体积D.△的面积11.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.1612.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正四面体的所有棱长都为2,则它的体积为________.14.将函数的图象向左平移个单位,若所得到图象关于原点对称,则的最小值为__________.15.已知直线过点,且它的一个方向向量为,则原点到直线的距离为______.16.一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、…、第五志愿的顺序填写志愿表,若专业不能作为第一、第二志愿,则他共有____种不同的填法。(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知实数a>0且a≠1.设命题p:函数f(x)=logax在定义域内单调递减;命题q:函数g(x)=x2﹣2ax+1在(,+∞)上为增函数,若“p∧q”为假,“p∨q”为真,求实数a的取值范围.18.(12分)已知函数,.(1)若不等式对任意的恒成立,求实数的取值范围;(2)记表示中的最小值,若函数在内恰有一个零点,求实的取值范围.19.(12分)设,.(1)证明:对任意实数,函数都不是奇函数;(2)当时,求函数的单调递增区间.20.(12分)设函数f(x)=,求函数f(x)的单调区间.21.(12分)已知圆圆心为,定点,动点在圆上,线段的垂直平分线交线段于点.求动点的轨迹的方程;若点是曲线上一点,且,求的面积.22.(10分)已知在△ABC中,|AB|=1,|AC|=1.(Ⅰ)若∠BAC的平分线与边BC交于点D,求;(Ⅱ)若点E为BC的中点,当取最小值时,求△ABC的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据利用二项展开式的通项公式、二项式系数的性质、以及,即可求得的值,得到答案.【详解】由题意,二项式,又由,所以,其中,由,可得:,即,即,解得,故选A.【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.2、A【解析】
因为,,由此类比可得,,从而可得到结果.【详解】因为二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.所以由四维空间中“超球”的三维测度,猜想其四为测度W,应满足,又因为,所以,故选A.【点睛】本题主要考查类比推理以及导数的计算.3、D【解析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
用表示出,结合余弦定理可得为钝角.【详解】如图,由可得平面,从而,线段长如图所示,由题意,,,显然,∴,为钝角,即为钝角三角形.故选C.【点睛】本题考查异面直线垂直的性质,考查三角形形状的判断.解题关键是用表示出.5、D【解析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【点睛】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.6、D【解析】
直接由组合数定义得解.【详解】由题可得:一个口袋内装有大小相同的8个球中,从中取3个球,共有N=C故选D【点睛】本题主要考查了组合数的定义,属于基础题.7、A【解析】
根据方程和函数的关系转化为函数,利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【详解】当x=0时,0=0,∴0为方程的一个根.当x>0时,方程|x4﹣x3|=ax等价为a=|x3﹣x2|,令f(x)=x3﹣x2,f′(x)=3x2﹣2x,由f′(x)<0得0<x<,由f′(x)>0得x<0或x>,∴f(x)在(0,)上递减,在上递增,又f(1)=0,∴当x=时,函数f(x)取得极小值f()=﹣,则|f(x)|取得极大值|f()|=,∴设的图象如下图所示,则由题可知当直线y=a与g(x)的图象有3个交点时0<a<,此时方程|x4﹣x3|=ax在R上存在4个不同的实根,故.故答案为:A【点睛】(1)本题主要考查函数与方程的应用,考查利用导数求函数的单调区间,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2)解答本题的关键有两点,其一是分离参数得到a=|x3﹣x2|,其二是利用导数分析函数的单调性得到函数的图像.8、B【解析】
易知函数是上的增函数,,结合零点存在性定理可判断出函数零点所在区间.【详解】函数是上的增函数,是上的增函数,故函数是上的增函数.,,则时,;时,,因为,所以函数在区间上存在零点.故选:B.【点睛】本题考查了函数零点所在区间,利用函数的单调性与零点存在性定理是解决本题的关键,属于基础题.9、B【解析】
解析:考察均值不等式,整理得即,又,10、B【解析】
试题分析:将平面延展到平面如下图所示,由图可知,到平面的距离为定值.由于四边形为矩形,故三角形的面积为定值,进而三棱锥的体积为定值.故A,C,D选项为真命题,B为假命题.考点:空间点线面位置关系.11、B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.12、D【解析】
根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.14、【解析】分析:先根据图像平移得解析式,再根据图像性质求关系式,解得最小值.详解:因为函数的图象向左平移个单位得,所以因为,所以点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.15、【解析】
求出直线的方程,然后利用点到直线的距离公式可求出原点到直线的距离.【详解】由于直线的一个方向向量为,则直线的斜率为,所以,直线的方程为,即,因此,原点到直线的距离为.故答案为:.【点睛】本题考查点到直线距离的计算,同时也考查了直线方向向量的应用,解题时要根据题中条件得出直线的斜率,并写出直线的方程,考查计算能力,属于中等题.16、【解析】根据题意,分2步进行分析:①、由于A专业不能作为第一、第二志愿,需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有种填法,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,有种填法,则该学生有30×60=1800种不同的填法;故答案为:1800.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
先分别求得p,q为真时的a的范围,再将问题转化为p,q一真一假时,分类讨论可得答案.【详解】∵函数f(x)=logax在定义域内单调递减,∴0<a<1.即:p:{a|0<a<1}.∵a>0且a≠1,∴¬p:{a|a>1},∵g(x)=x2﹣2ax+1在(,+∞)上为增函数,∴a.又∵a>0且a≠1,即q:{a|0<a}.∴¬q:{a|a且a≠1}.又∵“p∧q”为假,“p∨q”为真,∴“p真q假”或“p假q真”.①当p真q假时,{a|0<a<1}∩{a|a且a≠1}={a|a<1}..②当p假q真时,{a|a>1}∩{a|0<a}=∅,综上所述:实数a的取值范围是:{a|a<1}.【点睛】本题主要考查复合命题之间的关系,根据不等式的性质分别求得命题p,q为真时的参数的范围是解决本题的关键,考查分类讨论的思想,比较基础.18、(1);(2)【解析】
(1)利用分离参数,并构造新的函数,利用导数判断的单调性,并求最值,可得结果.(2)利用对的分类讨论,可得,然后判断函数单调性以及根据零点存在性定理,可得结果.【详解】(1)由,得,令,当时,,,;当时,,,,∴函数在上递减,在上递增,,,∴实数的取值范围是(2)①由(1)得当时,,,,函数在内恰有一个零点,符合题意②当时,i.若,,,故函数在内无零点ii.若,,,,不是函数的零点;iii.若时,,故只考虑函数在的零点,,若时,,∴函数在上单调递增,,,∴函数在上恰有一个零点若时,,∴函数在上单调递减,,∴函数在上无零点,若时,,,∴函数在上递减,在上递增,要使在上恰有一个零点,只需,.综上所述,实数的取值范围是.【点睛】本题考查函数导数的综合应用,难点在于对参数的分类讨论,考验理解能力以及对问题的分析能力,属难题.19、(1)见解析;(2)【解析】
(1)利用反证法验证即可证得结论;(2)根据函数解析式求得和,根据可得在上单调递增;根据可求得的解集,从而得到所求单调递增区间.【详解】(1)假设函数为奇函数且定义域为,则这与矛盾对任意实数,函数不可能是奇函数(2)当时,,则;在上单调递增又,则当时,的单调递增区间为:【点睛】本题考查利用反证法证明、函数单调区间的求解,涉及到函数奇偶性的应用、导数与函数单调性之间的关系,属于常规题型.20、单调递增区间是[1,+∞),单调递减区间是(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年漳州市漳浦县金瑞集团招聘笔试真题
- 2024-2025学年山东省日照市日照港中学八年级上学期12月月考英语试卷
- 2024年宁波城市职业技术学院招聘高技能人才笔试真题
- 2024年江苏无锡科技职业学院招聘笔试真题
- 2024年杭州市钱塘区紧缺岗位招聘笔试真题
- 高可靠性监控平台-全面剖析
- 校园法治文化建设计划
- 大数据驱动的运营优化-全面剖析
- 声嘶病理生理学探讨-全面剖析
- 矿山土石方作业安全防护措施
- GB/T 26314-2010锆及锆合金牌号和化学成分
- GB/T 21244-2007纸芯
- DB51-T 2985-2022竹林经营碳普惠方法学
- 初中语文中考试卷(含答案)
- disc与亲子沟通没有任何身份比为人父母更高贵
- 柳青《创业史》-全-课件
- 2001年考研英语真题及解析
- 安川变频器培训二:应用技术(安川)课件
- ICRU62号报告详细完整
- 介绍家乡 贵州长顺课件
- 五年级下册信息技术课件-8.安全过马路|大连理工版 (共8张PPT)
评论
0/150
提交评论