2023届湖南省长沙市地质中学高二数学第二学期期末学业水平测试试题含解析_第1页
2023届湖南省长沙市地质中学高二数学第二学期期末学业水平测试试题含解析_第2页
2023届湖南省长沙市地质中学高二数学第二学期期末学业水平测试试题含解析_第3页
2023届湖南省长沙市地质中学高二数学第二学期期末学业水平测试试题含解析_第4页
2023届湖南省长沙市地质中学高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从二项分布,则().A. B. C. D.2.双曲线的左右焦点分别为F1,F2,过F1的直线交曲线左支于A,B两点,△F2AB是以A为直角顶点的直角三角形,且∠AF2B=30°.若该双曲线的离心率为e,则e2=()A. B. C. D.3.将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为()A.543 B.425 C.393 D.2754.如图,在正四棱柱中,是侧面内的动点,且记与平面所成的角为,则的最大值为A. B. C. D.5.函数是定义在上的奇函数,当时,,则A. B. C. D.6.抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是()A.“两次得到的点数和是12”B.“第二次得到6点”C.“第二次的点数不超过3点”D.“第二次的点数是奇数”7.定义语句“”表示把正整数除以所得的余数赋值给,如表示7除以3的余数为1,若输入,,则执行框图后输出的结果为()A.6 B.4 C.2 D.18.已知函数的图象与直线有两个交点,则m的取值范围是()A. B. C. D.9.已知随机变量服从正态分布,则等于()A. B. C. D.10.若,则的值为()A. B. C. D.11.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.12.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件为“抓取的球中存在两个球同色”,事件为“抓取的球中有红色但不全是红色”,则在事件发生的条件下,事件发生的概率()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.14.若命题:是真命题,则实数的取值范围是______.15.在四面体中,,已知,,且,则四面体的体积的最大值为_______.16.已知定义在R上的函数是奇函数且满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.18.(12分)设(Ⅰ)求的单调区间.(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在求出的最小值,若不存在,说明理由.19.(12分)某校举办《国学》知识问答中,有一道题目有5个选项A,B,C,D,E,并告知考生正确选项个数不超过3个,满分5分,若该题正确答案为,赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分”.假定考生作答的答案中的选项个数不超过3个.(1)若张小雷同学无法判断所有选项,只能猜,他在犹豫答案是“任选1个选项作为答案”或者“任选2个选项作为答案”或者“任选3个选项作为答案”,以得分期望为决策依据,则他的最佳方案是哪一种?说明理由.(2)已知有10名同学的答案都是3个选项,且他们的答案互不相同,他们此题的平均得分为x分.现从这10名同学中任选3名,计算得到这3名考生此题得分的平均分为y分,试求的概率.20.(12分)已知的展开式中,所有项的二项式系数之和为128.(1)求展开式中的有理项;(2)求展开后所有项的系数的绝对值之和.21.(12分)已知正四棱柱的底面边长为2,.(1)求该四棱柱的侧面积与体积;(2)若为线段的中点,求与平面所成角的大小.22.(10分)已知a>0,设p:实数x满足x2-4ax+3a2<0,q(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】表示做了次独立实验,每次试验成功概率为,则.选.2、D【解析】

设,根据是以为直角顶点的直角三角形,且,以及双曲线的性质可得,再根据勾股定理求得的关系式,即可求解.【详解】由题意,设,如图所示,因为是以为直角顶点的直角三角形,且,由,所以,由,所以,所以,即,所以,所以,,在直角中,,即,整理得,所以,故选D.【点睛】本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)..3、C【解析】分析:根据题意,易得5名同学中每人有3种报名方法,由分步计数原理计算可得答案.第二种先分组再排列,问题得以解决.详解:5名同学报名参加跳绳、接力,投篮三项比赛,每人限报一项,每人有3种报名方法,根据分步计数原理,x==243种,当每项比赛至少要安排一人时,先分组有(+)=25种,再排列有=6种,所以y=25×6=150种,所以x+y=1.故选:C.点睛:排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.4、B【解析】

建立以点为坐标原点,、、所在直线分别为轴、轴、轴的空间直角坐标系,设点,利用,转化为,得出,利用空间向量法求出的表达式,并将代入的表达式,利用二次函数的性质求出的最大值,再由同角三角函数的基本关系求出的最大值.【详解】如下图所示,以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,则、、,设点,则,,,,,则,得,平面的一个法向量为,所以,,当时,取最大值,此时,也取最大值,且,此时,,因此,,故选B.【点睛】本题考查立体几何的动点问题,考查直线与平面所成角的最大值的求法,对于这类问题,一般是建立空间坐标系,在动点坐标内引入参数,将最值问题转化为函数的问题求解,考查运算求解能力,属于难题.5、D【解析】

利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)本题主要考查奇函数的性质,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)奇函数f(-x)=-f(x).6、A【解析】

利用独立事件的概念即可判断.【详解】“第二次得到6点”,“第二次的点数不超过3点”,“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于“两次得到的点数和是12”则第一次一定是6点,第二次也是6点,故不是相互独立,故选D.【点睛】本题考查了相互独立事件,关键是掌握其概念,属于基础题.7、C【解析】

模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.【详解】第一次进入循环,因为56除以18的余数为2,所以,,,判断不等于0,返回循环;第二次进入循环,因为18除以2的余数为0,所以,,,判断等于0,跳出循环,输出的值为2.故选C.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8、A【解析】

两个函数图象的交点个数问题,转化为方程有两个不同的根,再转化为函数零点问题,设出函数,求单调区间,分类讨论,求出符合题意的范围即可.【详解】解:函数的图象与直线有两个交点可转化为函数有两个零点,导函数为,当时,恒成立,函数在R上单调递减,不可能有两个零点;当时,令,可得,函数在上单调递减,在上单调递增,所以的最小值为.令,则,所以在上单调递增,在上单调递减.所以.所以的最小值,则m的取值范围是.故选:【点睛】本题考查函数零点问题,利用方程思想转化与导数求解是解决本题的关键,属于中档偏难题.9、D【解析】

根据正态分布的性质求解.【详解】因为随机变量服从正态分布,所以分布列关于对称,又所有概率和为1,所以.故选D.【点睛】本题考查正态分布的性质.10、A【解析】(a0+a2+a4)2-(a1+a3)2选A11、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.12、C【解析】

根据题意,求出和,由公式即可求出解答.【详解】解:因为事件为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以事件发生且事件发生概率为:故.故选:C.【点睛】本题考查条件概率求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、37(元)【解析】

由已知条件直接求出数学期望,即可求得结果【详解】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利:50×0.6+30×0.3-20×0.1=37(元).故答案为37(元)【点睛】本题主要考查了期望的实际运用,由已知条件,结合公式即可计算出结果,本题较为简单。14、.【解析】试题分析:命题:“对,”是真命题.当时,则有;当时,则有且,解得.综上所示,实数的取值范围是.考点:1.全称命题;2.不等式恒成立15、【解析】

作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【点睛】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.16、0【解析】

根据奇函数的性质可知,由可求得周期和,利用周期化简所求式子可求得结果.【详解】为定义在上的奇函数,.由得:,是周期为的周期函数,令得:..故答案为:.【点睛】本题考查利用函数的奇偶性和周期性求解函数值的问题,关键是能够根据抽象函数关系式推导得到函数的周期.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),有理项有三项,分别为:;(2)128,128,相等【解析】

(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【点睛】本题主要考查二项式定理的通项,二项式系数和,注意二项式系数和与系数和的区别,意在考查学生的计算能力和分析能力,难度中等.18、(Ⅰ)详见解析;(Ⅱ)0.【解析】

(Ⅰ)对分三种情况讨论,利用导数求的单调区间;(Ⅱ)先求出函数h(x)在上单调递减,在上单调递增,再求出,即得解.【详解】解:(I)时,令令故在单调递增,在上单调递减;0≤≤1时,恒成立,故在单调递增.时,令令故在单调递减,在上单调递增;综上:在单调递增,在上单调递减;时在单调递增.时,在单调递减,在上单调递增.(II)当时,由于在上单调递增且故唯一存在使得即故h(x)在上单调递减,在上单调递增,故又且在上单调递增,故即依题意:有解,故又故【点睛】本题主要考查利用导数求函数的单调区间,考查利用导数研究不等式存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)他的最佳方案是“任选1个选项作为答案”或者“任选2个选项作为答案”,理由见解析;(2).【解析】

(1)分情况讨论:当任选1个选项的得分为X分,可得X可取0,2,利用组合运算算出概率,并计算出期望;当任选2个选项的得分为Y分,可得Y可取0,4,利用组合运算算出概率,并计算出期望;当任选3个选项的得分为Z分,则Z可取0,1,5,利用组合运算算出概率,并计算出期望;比较数值大小即可.(2)由题意可得这10名考生中有3人得分为0分,6人得分为1分,1人得分为5分,可得,由,、可得3人得分总分小于3.3,即可求解.【详解】(1)设任选1个选项的得分为X分,则X可取0,2,,,设任选2个选项的得分为Y分,则Y可取0,4,设任选3个选项的得分为Z分,则Z可取0,1,5,,,所以他的最佳方案是“任选1个选项作为答案”或者“任选2个选项作为答案”(2)由于这10名同学答案互不相同,且可能的答案总数为10,则这10名考生中有3人得分为0分,6人得分为1分,1人得分为5分,则有,则3人得分总分小于3.3,则【点睛】本题考查了古典概型的概率计算公式、组合数的计算以及数学期望,考查了分类讨论的思想,属于中档题.20、(1),,,(2)21【解析】分析:(1)根据题意,求的,写出二项展示的通项,即可得到展开式的有理项;(2)由题意,展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,即可求解.详解:根据题意,,(1)展开式的通项为.于是当时,对应项为有理项,即有理项为(2)展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,在中令x=1得展开式中所有项的系数和为(1+2)7=37=21.所以展开式中所有项的系数和为21.点睛:本题主要考查二项式定理的通项与系数,属于简单题,二项展开式定理的问题也是高考命题热点之一,关于二项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论