版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数满足为自然对数的底数),其中为的导函数,若,则的解集为()A. B. C. D.2.若数列满足(,为常数),则称数列为调和数列.已知数列为调和数列,且,则()A.10 B.20 C.30 D.403.已知与之间的一组数据:01231357则与的线性回归方程必过A. B. C. D.4.“,”是“双曲线的离心率为”的()A.充要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分不必要条件5.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为6.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.157.6名学生站成一排,若学生甲不站两端,则不同站法共有()A.240种 B.360种 C.480种 D.720种8.若的展开式中的第五、六项二项式系数最大,则该展开式中常数项为()A. B.84 C. D.369.若两个正实数满足,且恒成立,则实数的取值范围是()A. B. C. D.10.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.4011.已知命题,则命题的否定为()A. B.C. D.12.已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中,项的系数为______________14.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.15.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.16.已知常数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)球O的半径为R,A﹑B﹑C在球面上,A与B,A与C的球面距离都为,B与C的球面距离为,求球O在二面角B-OA-C内的部分的体积.18.(12分)如图,圆锥的轴截面为等腰为底面圆周上一点.(1)若的中点为,求证:平面;(2)如果,求此圆锥的体积;(3)若二面角大小为,求.19.(12分)已知复数在复平面内对应的点位于第二象限,且满足.(1)求复数;(2)设复数满足:为纯虚数,,求的值.20.(12分)对某班50名学生的数学成绩和对数学的兴趣进行了调查,统计数据如下表所示:对数学感兴趣对数学不感兴趣合计数学成绩好17825数学成绩一般52025合计222850(1)试运用独立性检验的思想方法分析:学生学习数学的兴趣与数学成绩是否有关系,并说明理由.(2)从数学成绩好的同学中抽取4人继续调查,设对数学感兴趣的人数为,求的分布列和数学期望.附:0.0500.0100.0013.8416.63510.828.21.(12分)已知函数.(1)求函数的极值;(2)当时,证明:;(3)设函数的图象与直线的两个交点分别为,,的中点的横坐标为,证明:.22.(10分)已知中,,且.(1)求m;(2)求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由,以及,联想到构造函数,所以等价为,通过导数求的单调性,由单调性定义即可得出结果。【详解】设,等价为,,故在上单调递减,所以,解得,故选C。【点睛】本题主要考查利用导数研究函数的单调性的问题,利用单调性定义解不等式,如何构造函数是解题关键,意在考查学生数学建模能力。2、B【解析】分析:由题意可知数列是等差数列,由等差数列的性质得,得详解:数列为调和数列为等差数列,由等差数列的求和公式得,由等差数列的性质故选B点睛:本题考查数列的性质和应用,解题时要认真审题,通过合理的转化建立起已知条件和考点之间的联系是解题关键.3、B【解析】
先求出x的平均值,y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.【详解】解:回归直线方程一定过样本的中心点(,),,∴样本中心点是(1.5,4),则y与x的线性回归方程y=bx+a必过点(1.5,4),故选B.【点睛】本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).4、D【解析】
当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.5、A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.6、C【解析】
根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000=【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.7、C【解析】
先选2人(除甲外)排在两端,其余的4人任意排,问题得以解决.【详解】先选2人(除甲外)排在两端,其余的4人任意排,故种,故选:C.【点睛】本题考查排列、组合及简单计数问题,常用的方法有元素优先法、插空法、捆绑法、分组法等,此题考查元素优先法,属于简单题.8、B【解析】
先由的展开式中的第五、六项二项式系数最大,求解n,写出通项公式,令,求出r代入,即得解.【详解】由于的展开式中的第五、六项二项式系数最大,故,二项式的通项公式为:令可得:故选:B【点睛】本题考查了二项式定理的应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.9、D【解析】
将代数式与相乘,展开后利用基本不等式求出的最小值,然后解不等式,可得出实数的取值范围.【详解】由基本不等式得,当且仅当,由于,,即当时,等号成立,所以,的最小值为,由题意可得,即,解得,因此,实数的取值范围是,故选D.【点睛】本题考查不等式恒成立问题,考查利用基本不等式求最值,对于不等式成立的问题,需要结合量词来决定所选择的最值,考查计算能力,属于中等题.10、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=4011、D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.12、B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∴二项式展开式中,含项为∴它的系数为1.故答案为1.14、【解析】
选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解.【详解】从5名男同学和2名女同学中选出3人,有种选法;选出的男女同学均不少于1名,有种选法;故选出的同学中男女生均不少于1名的概率:.【点睛】本题考查排列组合和古典概型.排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.15、;【解析】
利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.16、1【解析】
由二项式系数性质可得,再结合数列极限的求法即可得解.【详解】因为,则,所以,故答案为:1.【点睛】本题考查了二项式系数及数列极限,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。【详解】解:A与B,A与C的球面距离都为,,BOC为二面角B-AO-C的平面角,又B与C的球面距离为,BOC=,球O夹在二面角B-AO-C的体积是球的六分之一即为【点睛】先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。18、(1)证明见解析(2)(3)60°【解析】
(1)连接、,由三角形中位线定理可得,由圆周角定理我们可得,由圆锥的几何特征,可得,进而由线面垂直的判定定理,得到平面,则,结合及线面垂直的判定定理得到平面;(2)若,易得,又由,我们求出圆锥的底面半径长及圆锥的高,代入圆锥体积公式,即可得到圆锥的体积;(3)作于点,由面面垂直的判定定理可得平面,作于点,连,则为二面角的平面角,根据二面角的大小为,设,,进而可求出的大小【详解】(1)如图:连接、,因为为的中点,所以.因为为圆的直径,所以,.因为平面,所以,所以平面,.又,,所以平面.(2),,,又,,.(3)作于点,平面平面且平面平面平面.再作于点,连,为二面角的平面角如图:,.设,,,,,,,.,解得,【点睛】本题考查线面垂直的判定定理,圆锥体积的求法,二面角的作法与求法,解题关键(1)在于能利用线面垂直与线线垂直相互转化,(2)在于结合几何关系求出底面半径,(3)在于能正确作出二面角,能用三角函数基本定义表示基本线段关系,属于中档题19、(1);(2).【解析】分析:(1)解一元二次方程,得到,根据在复平面内对应的点位于第二象限,即可判断的取值。(2)根据复数的乘法运算、纯虚数的概念、模的定义,联立方程求得x、y的值,进而求得的值。详解:(1)因为,所以,又复数对应的点位于第二象限,所以;(2)因为,又为纯虚数,所以,有得,解得,或,;所以.点睛:本题考查了复数相等、纯虚数等概念和复数的混合运算,对基本的运算原理要清晰,属于基础题。20、(1)有99.9%的把握认为有关系,理由详见解析;(2)分布列详见解析,数学期望为2.72【解析】
根据表中数据计算观测值,对照临界值得出结论;
由题意知随机变量X的可能取值,计算对应的概率值,写出分布列和数学期望值.【详解】(1).因为,所以有99.9%的把握认为有关系.(2)由题意知,的取值为0,1,2,3,1.因为,.所以,分布列为01231所以,.【点睛】本题考查了独立性检验与离散型随机变量的分布列应用问题,是中档题.21、(1)取得极大值,没有极小值(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2MemyfamilyandfriendsUnit2FriemdsPeriod2(课件)牛津上海版(试用本)英语五年级上册
- 2024年度智能城市基础设施建设合同3篇
- 建筑劳务承包合同范本
- 2024年二手房交易双方权益保障协议2篇
- 2024年度软件许可合同的许可权限3篇
- 生产车间新员工入职培训
- 全体员工培训计划方案
- 2024年度环保项目投资与融资法律尽职调查合同3篇
- 《智慧商场方案》课件
- 《成分输血进展》课件
- 2024年1月上海市春季高考数学试卷试题真题(含答案详解)
- 2024-2030年全球及中国乳清蛋白水解物行业供需现状及前景动态预测报告
- 2024-2030年中国铝合金板行业供需现状分析及投资战略研究报告版
- 2024年黑龙江省齐齐哈尔市中考语文试卷
- 2024年国家公务员考试《行测》真题(地市级)及答案解析
- 2024年化妆品ODM合作合同
- 预防电信诈骗打击网络犯罪49
- 少年的风采 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 班主任培训课件
- 石油化工代加工合同模板
- 第03讲 鉴赏诗歌的表达技巧(课件)-2025年高考语文一轮复习讲练测(新教材新高考)
评论
0/150
提交评论