版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1 C.-1 D.-32.已知O为坐标原点,双曲线C:的右焦点为F,焦距为,C的一条渐近线被以F为圆心,OF为半径的圆F所截得的弦长为2,则C的方程是()A. B. C. D.3.的展开式中,常数项为()A.-15 B.16 C.15 D.-164.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是()A. B. C. D.5.某公司在年的收入与支出情况如下表所示:收入(亿元)支出y(亿元)根据表中数据可得回归直线方程为,依此名计,如果年该公司的收入为亿元时,它的支出为()A.亿元 B.亿元 C.亿元 D.亿元6.6名学生站成一排,若学生甲不站两端,则不同站法共有()A.240种 B.360种 C.480种 D.720种7.已知是定义在上的奇函数,对任意,,都有,且对于任意的,都有恒成立,则实数的取值范围是()A. B. C. D.8.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法9.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.21010.已知向量与向量的模均为2,若,则它们的夹角是()A. B. C. D.11.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)12.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.14.的展开式中仅有第4项的二项式系数最大,则该展开式的常数项是__________.15.过原点作一条倾斜角为的直线与椭圆交于、两点,为椭圆的左焦点,若,且该椭圆的离心率,则的取值范围为__________.16.已知a,b∈{0,1,2,3},则不同的复数z=a+bi的个数是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)设为函数的两个零点,求证:.18.(12分)骰子是一种质地均匀的正方体玩具,它的六个面上分别刻有1到6的点数.甲、乙两人玩一种“比手气”的游戏.游戏规则如下:在一局游戏中,两人都分别抛掷同一颗骰子两次,若某人两次骰子向上的点数之差的绝对值不大于2,就称他这局“好手气”.(1)求甲在一局游戏中获得“好手气”的概率;(2)若某人获得“好手气”的局数比对方多,称他“手气好”.现甲、乙两人共进行了3局“比手气”游戏,求甲“手气好”的概率.19.(12分)在中,内角所对的边分别为且满足.(1)求角的大小;(2)若,的面积为,求的值..20.(12分)如图,切于点,直线交于两点,,垂足为.(1)证明:(2)若,,求圆的直径.21.(12分)求证:22.(10分)如图所示,在边长为的正三角形中,、依次是、的中点,,,,、、为垂足,若将绕旋转,求阴影部分形成的几何体的表面积与体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=1.∴f(-1)=-f(1)=-1.故选D.2、A【解析】
根据点到直线的距离公式,可求出点F到渐近线的距离刚好为,由圆的知识列出方程,通过焦距为,求出,即可得到双曲线方程.【详解】为坐标原点,双曲线的右焦点为,焦距为,可得,的一条渐近线被以为圆心,为半径的圆所截得的弦长为2,因为点F到渐近线的距离刚好为,所以可得即有,则,所以双曲线方程为:.故选.【点睛】本题主要考查双曲线的简单性质的应用以及双曲线方程的求法,意在考查学生的数学运算能力.3、B【解析】
把按照二项式定理展开,可得的展开式中的常数项.【详解】∵()•(1),故它的展开式中的常数项是1+15=16故选:B【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,熟记公式是关键,属于基础题.4、B【解析】
利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【详解】由球体的体积公式得,,,,,,与最为接近,故选C.【点睛】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题.5、B【解析】,,代入回归直线方程,,解得:,所以回归直线方程为:,当时,支出为亿元,故选B.6、C【解析】
先选2人(除甲外)排在两端,其余的4人任意排,问题得以解决.【详解】先选2人(除甲外)排在两端,其余的4人任意排,故种,故选:C.【点睛】本题考查排列、组合及简单计数问题,常用的方法有元素优先法、插空法、捆绑法、分组法等,此题考查元素优先法,属于简单题.7、B【解析】
由可判断函数为减函数,将变形为,再将函数转化成恒成立问题即可【详解】,又是定义在上的奇函数,为R上减函数,故可变形为,即,根据函数在R上为减函数可得,整理后得,在为减函数,为增函数,所以在为增函数,为减函数在恒成立,即,当时,有最小值所以答案选B【点睛】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题8、D【解析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.9、C【解析】
由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【点睛】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.10、A【解析】
由题意结合数量积的运算法则可得,据此确定其夹角即可.【详解】∵,∴,∴,故选A.【点睛】本题主要考查向量夹角的计算,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.11、C【解析】
求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【解析】
本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14、15【解析】∵二项式的展开式中仅有第4项的二项式系数最大,,
则展开式中的通项公式为.
令,求得,故展开式中的常数项为,
故答案为15.15、【解析】设右焦点F′,连结AF′,BF′,得四边形AFBF′是正方形,∵AF+AF′=2a,AF+BF=2a,OF=c,∴AB=2c,∵∠BAF=θ,∴AF=2c•cos,BF=2c•sin,∴2csin+2ccos=2a,∵该椭圆的离心率,∴∵θ∈[0,π),∴的取值范围为.点睛:本题主要考查椭圆的标准方程与几何性质.有关椭圆的离心率问题的关键是利用图形中的几何条件构造的关系,解决椭圆离心率的相关问题的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.16、1【解析】
分a=b和a≠b两种情况讨论,结合排列数公式求解.【详解】当a=b时,复数z=a+bi的个数是4个;当a≠b时,由排列数公式可知,组成不同的复数z=a+bi的个数是A42∴不同的复数z=a+bi的个数是1个.故答案为:1.【点睛】本题主要考查了排列及排列数公式,涉及分类讨论思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递减区间为,单调递增区间为.(2)见证明,【解析】
(1)利用导数求函数单调区间的一般步骤即可求出;(2)将零点问题转化成两函数以及图像的交点问题,通过构造函数,依据函数的单调性证明即可。【详解】解:(1)∵,∴.当时,,即的单调递减区间为,无增区间;当时,,由,得,当时,;当时,,∴时,的单调递减区间为,单调递增区间为.(2)证明:由(1)知,的单调递减区间为,单调递增区间为,不妨设,由条件知即构造函数,则,由,可得.而,∴.知在区间上单调递减,在区间单调递增,可知,欲证,即证.考虑到在上递增,只需证,由知,只需证.令,则.所以为增函数.又,结合知,即成立,所以成立.【点睛】本题考查了导数在函数中的应用,求函数的单调区间,以及函数零点的常用解法,涉及到分类讨论和转化与化归等基本数学思想,意在考查学生的逻辑推理、数学建模和运算能力。18、(1);(2).【解析】
(1)根据题意,分别求出先后抛掷同一颗骰子两次,以及获得“好手气”所包含的基本事件个数,基本事件个数比即为所求概率;(2)根据题意,得到甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种情况:甲获得3次“好手气”,乙少于3次;甲获得2次“好手气”,乙少于2次;甲获得1次“好手气”,乙获得0次;再由题中数据,即可求出结果.【详解】(1)由题意,甲先后抛掷同一颗骰子两次,共有种情况;获得“好手气”包含:,共种情况,因此甲在一局游戏中获得“好手气”的概率为;(2)由(1)可得,甲乙在一局游戏中获得“好手气”的概率均为;现甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种情况:甲获得3次“好手气”,乙少于3次;甲获得2次“好手气”,乙少于2次;甲获得1次“好手气”,乙获得0次;所以甲“手气好”的概率为:.【点睛】本题主要考查独立重复试验的概率,以及古典概型的概率计算,属于常考题型.19、(1);(2).【解析】分析:(1)根据正弦定理边化角,化简整理即可求得角B的值.(2)由三角形面积公式,得,再根据余弦定理,即可求得的值.详解:解:(1)解法一:由及正弦定理得:,,,.即(1)解法二:因为所以由可得……1分由正弦定理得即,,即(2)解法一:,,由余弦定理得:,即,,.(2)解法二:,,由余弦定理得:,即,由,得或.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化第三步:求结果20、(1)见解析;(2)3【解析】试题分析:(1)根据直径的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2MemyfamilyandfriendsUnit2FriemdsPeriod2(课件)牛津上海版(试用本)英语五年级上册
- 2024年度智能城市基础设施建设合同3篇
- 建筑劳务承包合同范本
- 2024年二手房交易双方权益保障协议2篇
- 2024年度软件许可合同的许可权限3篇
- 生产车间新员工入职培训
- 全体员工培训计划方案
- 2024年度环保项目投资与融资法律尽职调查合同3篇
- 《智慧商场方案》课件
- 《成分输血进展》课件
- 直播带货助农现状及发展对策研究-以抖音直播为例(开题)
- DZ∕T 0284-2015 地质灾害排查规范(正式版)
- 2024年江苏国信新丰海上风力发电有限公司招聘笔试冲刺题(带答案解析)
- 起诉闲鱼起诉书
- 2024年福建省厦门市翔安区残疾人联合会招聘残疾人工作联络员29人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 学术交流英语(学术写作)智慧树知到期末考试答案2024年
- 梁承载力验算
- 分销渠道案例分析之娃哈哈
- GB/T 43637-2024城市光环境景观照明设施运行维护服务规范
- CJJ 169-2012城镇道路路面设计规范
- (2024年)院感知识培训内容(完整详细版)x
评论
0/150
提交评论